科技日报---研究人员开发出革命性的钻石制造技术
2025-01-16 13:03阅读:
关键词:钻石、金刚石膜、工业应用
题记:钻石,世界上最硬的物质,竟然可以加工成柔软耐磨的薄膜,想想就不可思议。现代科技的进步,真是“没有做不到,只有想不到”!将金刚石膜应用于电子、光子学、力学、热学、声学和量子技术方面,必然会带来重大的工业突破和飞越;共同期待金刚石膜的美好未来………….
Researchers Develop Revolutionary Diamond Fabrication
Technology
研究人员开发出革命性的钻石制造技术
HKU researchers created an ultra-efficient method for
mass-producing flexible diamond membranes, unlocking applications
in cutting-edge electronics and quantum devices.
香港大学的研究人员开创了一种超高效的方法来大规模生产柔性金刚石膜,从而解锁了其在尖端电子和量子器件中的应用。
Researchers at HKU have devised a rapid, scalable
m
ethod to produce ultrathin diamond membranes, unlocking
applications in electronics, photonics, and quantum devices. This
innovation overcomes traditional fabrication challenges, leveraging
diamonds’ exceptional properties for next-generation
technologies.
香港大学的研究人员设计了一种快速、可扩展的方法来生产超薄金刚石膜,从而解锁了其在电子、光子学和量子器件中的应用。这项创新克服了传统制造的挑战,利用钻石的卓越特性为下一代技术服务。
A research team led by Professor Zhiqin Chu, Associate
Professor in Electrical & Electronic Engineering, and Professor
Yuan Lin, Professor in Mechanical Engineering at the University of
Hong Kong (HKU), has developed a revolutionary method for producing
ultrathin and ultra-flexible diamond membranes. Their work is a
collaboration with Professor Kwai Hei Li of the Southern University
of Science and Technology and Professor Qi Wang from the Dongguan
Institute of Opto-Electronics at Peking
University.
香港大学电子电气工程系副教授朱志勤教授和机械工程系教授袁林教授领导的研究团队开发了一种生产超薄和超柔性金刚石膜的革命性方法。他们的工作是与南方科技大学的Kwai
Hei Li教授和北京大学东莞光电研究所的Qi
Wang教授合作完成的。
These diamond membranes are uniquely compatible with
current semiconductor manufacturing processes, enabling their
integration into a wide range of applications, including
electronic, photonic, mechanical, acoustic, and quantum
devices.
这些金刚石膜与当前的半导体制造工艺具有独特的兼容性,使其能够集成到广泛的应用中,包括电子、光子、机械、声学和量子器件。
The team’s innovative edge-exposed exfoliation method
allows for the rapid, scalable production of free-standing diamond
membranes. This technique surpasses traditional methods, which are
typically expensive, time-consuming, and limited in size. Notably,
the new process can produce a two-inch diamond wafer in just 10
seconds, setting a new benchmark for efficiency and scalability in
the field.
该团队的创新边缘暴露剥离方法允许快速、可扩展地生产独立的金刚石膜。这种技术超越了传统方法,传统方法通常昂贵、耗时且尺寸有限。值得注意的是,新工艺可以在短短10秒内生产出两英寸的金刚石晶片,为该领域的效率和可扩展性确立了新的基准。
Vision for Industrial Applications
These ultra-flat diamond surfaces, essential for
high-precision micromanufacturing, along with the flexibility of
the membranes, open up new possibilities for next-generation
flexible and wearable electronic and photonic devices. The research
team envisions significant industrial applications in electronics,
photonics, mechanics, thermics, acoustics, and quantum
technologies.
工业应用愿景
这些超平坦的金刚石表面对于高精度微制造至关重要,再加上膜的高弹性,为下一代柔性和耐磨的电子和光子设备开辟了新的可能性。该研究团队设想在电子、光子学、力学、热学、声学和量子技术方面有重大的工业应用。
“We hope to promote the usage of the high-figure-of-merit
diamond membrane in various fields, and to commercialize this
cutting-edge technology and deliver premium diamond membranes,
setting a new standard in the semiconductor industry. We are eager
to collaborate with academic and industry partners to bring this
revolutionary product to market and accelerate the arrival of the
diamond era,” concluded Professor Chu.
朱教授总结道:“我们希望促进高性能金刚石膜在各个领域的使用,并将这项尖端技术商业化,提供优质的金刚石膜,为半导体行业树立新的标准。我们渴望与学术和行业合作伙伴合作,将这一革命性产品推向市场,加快金刚石时代的到来。”
Diamonds, renowned globally as valuable gemstones, possess
exceptional versatility in various scientific and engineering
applications. They are the hardest natural material, boasting
unparalleled thermal conductivity at room temperature, extremely
high carrier mobility, dielectric breakdown strength, an ultrawide
bandgap, and optical transparency spanning from the infrared to the
deep-ultraviolet spectrum.
钻石作为全球著名的珍贵宝石,在各种科学和工程应用中具有非凡的多功能性。它们是最坚硬的天然材料,在室温下具有无与伦比的导热性、极高的载流子迁移率、介电击穿强度、超宽带隙和从红外到深紫外光谱的光学透明度。
These remarkable properties make diamonds ideal for
fabricating advanced high-power, high-frequency electronic devices,
photonic devices, and heat spreaders to cool high-power-density
electronic components, such as those in processors, semiconductor
lasers, and electric vehicles. However, the inert nature and rigid
crystal structure of diamonds pose significant challenges in
fabrication and mass production, particularly for ultrathin and
freestanding diamond membranes, thereby restricting their
widespread usage.
这些卓越的特性使钻石成为制造先进的高功率、高频电子器件、光子器件和散热器的理想选择,以冷却高功率密度电子元件,如处理器、半导体激光器和电动汽车中的电子元件。然而,钻石的惰性和刚性晶体结构在制造和大规模生产中带来了重大挑战,特别是对于超薄和独立的金刚石膜,从而限制了它们的广泛使用。