新浪博客

太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini

2020-04-05 23:14阅读:
第一节 太阳辐射
地球大气中的一切物理过程都伴随着能量的转换,而辐射能,尤其是太阳辐射能是地球大气最重要的能量来源。一年中整个地球可以由太阳获得5.44×1024J的辐射能量。地球和大气的其它能量来源同来自太阳的辐射能相比是极其微小的。比如来自宇宙中其它星体的辐射能仅是来自太阳辐射能的亿分之一。从地球内部传递到地面上的能量也仅是来自太阳辐射能的万分之一。
一、辐射的基本知识
(一)辐射与辐射能
自然界中的一切物体都以电磁波的方式向四周放射能量,这种传播能量的方式称为辐射。通过辐射传播的能量称为辐射能,也简称为辐射。辐射是能量传播方式之一,也是太阳能传输到地球的唯一途径。
辐射能是通过电磁波的方式传输的。电磁波的波长范围很广,从波长10-10μm的宇宙射线,到波长达几千米的无线电波。肉眼看得见的是从0.4—0.76μm的波长,这部分称为可见光。可见光经三棱镜分光后,成为一条由红、橙、黄、绿、青、蓝、紫等各种颜色组成的光带,其中红光波长最长,紫光波长最短。其它各色光的波长则依次介于其间。波长长于红色光波的,有红外线和无线电波;波长短于紫色光波的,有紫外线、X射线、γ射线等,这些射线虽然不能为肉眼看见,但是用仪器可以测量出来(图2·1)。气象学着重研究的是太阳、地球和大气的热辐射。它们的波长范围大约在0.15—120μm之间。在气象学中,通常以焦耳(J)作为辐射能的单位。单位时间内通过单位面积的辐射能量称辐射通量密度(E),单位是W/m2
辐射通量密度没有限定辐射方向,辐射接受面可以垂直于射线或与之成某一角度。如果指的是投射来的辐射,则称入射辐射通量密度;如果指的是自物体表面射出的辐射,则称放射辐射通量密度。其数值的大小反映物体放射能力的强弱,故称之为辐射能力或放射能力。
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini

单位时间内,通过垂直于选定方向上的单位面积(对球面坐标系,即单位立体角)的辐射能,称为辐射强度(I)。其单位是W/m2或W/sr。
辐射强度与辐射通量密度有密切关系,在平行光辐射的特殊情况下,辐射强度与辐射通量密度的关系为
I=E/cosθ (2·1)
式中θ为辐射体表面的法线方向与选定方向间的夹角。
(二)辐射光谱
为准确描述辐射能的性质,需要引入一个能确定辐射能按波长分布的函数,以便进一步确定物体的辐射特性。
设一物体的辐射出射度为 F(W/m2),在波长λ至λ+dλ间的辐射能为dF,则
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
式中Fλ是单位波长间隔内的辐射出射度,Fλ是波长的函数,称为分光辐射出射度,或单色辐射通量密度。因Fλ是随波长而变的函数,所以又称为辐射能随波长的分布函数。它不仅取决于物体的性质,而且还取决于物体所处的状态。Fλ随波长λ的变化可以用图形来表示,如图2·2所示。图中Fλ随λ的变化曲线称为辐射光谱曲线。
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
全波长总的辐射能力在图中为光谱曲线与横坐标所包围的面积。
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
(三)物体对辐射的吸收、反射和透射
不论何种物体,在它向外放出辐射的同时,必然会接受到周围物体向它投射过来的辐射,但投射到物体上的辐射并不能全部被吸收,其中一部分被反射,一部分可能透过物体(图2·3)。
设投射到物体上的总辐射能为Qo,被吸收的为Qa,被反射的为Qr,透过的为Qd。根据能量守恒原理
Qa+Qr+Qd=Qo
将上式等号两边除以Qo,得
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
式中左边第一项为物体吸收的辐射与投射于其上的辐射之比,称为吸收率(a);第二项为物体反射的辐射与投射于其上的辐射之比,称为反射率(r);第三项为透过物体的辐射与投射于其上的辐射之比,称为透射率(d),则
a+r+d=1
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
a、r、d都是0—1之间变化的无量纲量,分别表示物体对辐射吸收、反射和透射的能力。
物体的吸收率、反射率和透射率大小随着辐射的波长和物体的性质而改变。例如,干洁空气对红外线是近似透明的,而水汽对红外线却能强烈地吸收;雪面对太阳辐射的反射率很大,但对地面和大气的辐射则几乎能全部吸收。
(四)有关辐射的基本定律
1.基尔荷夫(Kirchhoff)定律
设有一真空恒温器(T),放出黑体辐射IλTb。在其中用绝热线悬挂一个非黑体物体,它的温度与容器温度一样亦为T,它的辐射强度为IλT,吸收率为KλT。这样非黑体和器壁之间将要达到辐射平衡。器壁放射的辐射能、非黑体放射的辐射能和未被吸收的非黑体反射辐射能,三者达到平衡,则
IλTB-(1-KλT)IλTb-IλT=0 (2·5)
除以IλTv,得
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini (2·6)
从放射率的定义得
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
所以
KλT=eλT (2·8)
(2·8)式是基耳荷夫定律的基本形式,它表明:在一定波长、一定温度下,一个物体的吸收率等于该物体同温度、同波长的放射率。即对不同物体,辐射能力强的物质,其吸收能力也强。辐射能力弱的物质,其吸收能力也弱。黑体吸收能力最强,所以它也是最好的放射体。下标λ表示在一定温度(T)下,不同波长的Kλ、eλ及Iλ的数值不同。即同一物体在温度T时它放射某一波长的辐射。那末,在同一温度下也吸收这一波长的辐射。
(2·6)式还可写成
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
这表明某温度、某波长的一个物体的辐射强度与其吸收率之比值等于同温度、同波长时的黑体辐射强度。在同温度条件下,这条规律适用各种波长的辐射体,因此基尔荷夫定律又可写成
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
上面讨论表明,在辐射平衡条件下,一物体在某波长λ的辐射强度和对该波长的吸收率之比值与物体的性质无关,对所有物体来讲,这一比值只是某波长λ和温度T的函数。从(2·6)式得
IλT=KλT·IλTb (2·11)
上式表明,基尔荷夫定律把一般物体的辐射、吸收与黑体辐射联系起来,从而有可能通过对黑体辐射的研究来了解一般物体的辐射,这就极大简化了一般辐射的问题。
基尔荷夫定律适用于处于辐射平衡的任何物体。对流层和平流层大气以及地球表面都可认为是处于辐射平衡状态,因而可直接应用这一定律。
2.斯蒂芬(Stefan)-玻耳兹曼(Boltzman)定律由实验得知,物体的放射能力是随温度、波长而改变的。图2·4是根据实测数据绘出的温度为300K、250K和200K时黑体的放射能力随波长的变化。
由图2·4可见,随着温度的升高,黑体对各波长的放射能力都相应地增强。因而物体放射的总能量(即曲线与横坐标之间包围的面积)也会显著增大。根据研究,黑体的总放射能力与它本身的绝对温度的四次方成正比,即
ETb=σT4 (2·12)
上式称斯蒂芬-波耳兹曼定律。式中σ=5.67×10-8W/(m2·K4)为斯蒂芬-波耳兹曼常数。
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
根据(2·12)式可以计算黑体在温度T时的辐射强度,也可以由黑体的辐射强度求得其表面温度。
3.维恩(Wein)位移定律
由图2·4还可看出,黑体单色辐射极大值所对应的波长(λm)是随温度的升高而逐渐向波长较短的方向移动的。根据研究,黑体单色辐射强度极大值所对应的波长与其绝对温度成反比,即
λmT=C (2·13)
上式称维恩位移定律。如果波长以微米为单位,则常数C=2 896μm· K。于是(2·13)式为
λmT=2 896μm·K (2·14)
上式表明,物体的温度愈高,其单色辐射极大值所对应的波长愈短;反之,物体的温度愈低,其辐射的波长则愈长。
有此三个辐射定律,绝对黑体的辐射规律就容易确定,因为它们把黑体的温度与其辐射光谱联系起来了。即使对非黑体,只要知道它们的温度和吸收率,利用基尔荷夫定律,它们的辐射能力也可以确定。
二、太阳辐射
(一)太阳辐射光谱和太阳常数
太阳辐射中辐射能按波长的分布,称为太阳辐射光谱。大气上界太阳光谱中能量的分布曲线(图2· 5中实线)与T=6 000K时,根据黑体辐射公式计算的黑体光谱能量分布曲线(图 2·5中虚线)相比较,非常相似。因此,可以把太阳辐射看作黑体辐射,有关黑体辐射的定律都可应用于太阳辐射。例如利用斯蒂芬-波耳兹曼定律和维恩定律,可以根据太阳辐射强度计算出太阳表面的温度;反过来利用天文仪器测得的太阳表面温度,也可以计算出太阳的辐射强度以及辐射最强的波长。
太阳是一个炽热的气体球,其表面温度约为6 000K,内部温度更高。根据维恩定律可以计算出太阳辐射最强的波长λm为0.475μm。这个波长在可见光范围内相当于青光部分。因此,太阳辐射主要是可见光线(0.4—0.76μm),此外也有不可见的红外线(>0.76μm)和紫外线(<O.4μm),但在数量上不如可见光多。在全部辐射能之中,波长在0.15—4μm之间占99%以上,且主要分布在可见光区和红外区,前者占太阳辐射总能量的50%,后者占43%,紫外区的太阳辐射能很少,只占总能量的7%。
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
太阳辐射通过星际空间到达地球。就日地平均距离来说,在大气上界,垂直于太阳光线的1cm2面积内,1min内获得的太阳辐射能量,称太阳常数,用I0表示。太阳常数虽经多年观测研究,由于观测设备、技术以及理论校正方法的不同,其数值常不一致,变动于1359—1418W/m2之间。1957年国际地球物理年决定采用1380W/m2。近年来,根据标准仪器,在高空气球、火箭和人造卫星上约25 000次以上的探测,得出太阳常数值约为 1367(±7)W/m2,这也是1981年世界气象组织推荐的太阳常数的最佳值。多数文献上采用1370W/m2。据研究,太阳常数也有周期性的变化,变化范围在1%—2%,这可能与太阳黑子的活动周期有关。在太阳黑子最多的年份,紫外线部分某些波长的辐射强度可为太阳黑子最少年份的20倍。
(二)太阳辐射在大气中的减弱
太阳辐射光通过大气圈,然后到达地表。由于大气对太阳辐射有一定的吸收、散射和反射作用,使投射到大气上界的太阳辐射不能完全到达地面,所以在地球表面所获得的太阳辐射强度比1370W/m2要小。
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
图2·6表明太阳辐射光谱穿过大气时受到减弱的情况:曲线1是大气上界太阳辐射光谱;曲线2是臭氧层下的太阳辐射光谱;曲线3是同时考虑到分子散射作用的光谱;曲线4是进一步考虑到粗粒散射作用后的光谱;曲线5是将水汽吸收作用也考虑在内的光谱,它也可近似地看成是地面所观测到的太阳辐射光谱。对比曲线1和5可以看出太阳辐射光谱穿过大气后的主要变化有:总辐射能有明显地减弱;辐射能随波长的分布变得极不规则;波长短的辐射能减弱得更为显著。产生这些变化的原因有以下几方面:
1.大气对太阳辐射的吸收
太阳辐射穿过大气层时,大气中某些成分具有选择吸收一定波长辐射能的特性。大气中吸收太阳辐射的成分主要有水汽、氧、臭氧、二氧化碳及固体杂质等。太阳辐射被大气吸收后变成了热能,因而使太阳辐射减弱。
水汽虽然在可见光区和红外区都有不少吸收带,但吸收最强的是在红外区,从0.93—2.85μm之间的几个吸收带。最强的太阳辐射能是短波部分,因此水汽从进入大气中的总辐射能量内吸收的能量并不多。据估计,太阳辐射因水汽的吸收可以减弱4%—15%。所以大气因直接吸收太阳辐射而引起的增温并不显著。
大气中的主要气体是氮和氧,只有氧能微弱地吸收太阳辐射,在波长小于0.2μm处为一宽吸收带,吸收能力较强,在0.69和0.76μm附近,各有一个窄吸收带,吸收能力较弱。
臭氧在大气中含量虽少,但对太阳辐射能量的吸收很强。在0.2—0.3μm为一强吸收带,使得小于0.29μm的辐射由于臭氧的吸收而不能到达地面。在0.6μm附近又有一宽吸收带,吸收能力虽然不强,但因位于太阳辐射最强烈的辐射带里,所以吸收的太阳辐射量相当多。
二氧化碳对太阳辐射的吸收总的说来是比较弱的,仅对红外区4.3μm附近的辐射吸收较强,但这一区域的太阳辐射很微弱,被吸收后对整个太阳辐射的影响不大。
此外,悬浮在大气中的水滴、尘埃等杂质,也能吸收一部分太阳辐射,但其量甚微。只有当大气中尘埃等杂质很多(如有沙暴、烟幕或浮尘)时,吸收才比较显著。
由以上分析可知,大气对太阳辐射的吸收具有选择性,因而使穿过大气后的太阳辐射光谱变得极不规则。由于大气中主要吸收物质(臭氧和水汽)对太阳辐射的吸收带都位于太阳辐射光谱两端能量较小的区域,因而对太阳辐射的减弱作用不大。也就是说,大气直接吸收的太阳辐射并不多,特别是对于对流层大气来说,太阳辐射不是主要的直接热源。
2.大气对太阳辐射的散射:
太阳辐射通过大气,遇到空气分子、尘粒、云滴等质点时,都要发生散射。但散射并不像吸收那样把辐射转变为热能,而只是改变辐射的方向,使太阳辐射以质点为中心向四面八方传播(图2·7)。因而经过散射,一部分太阳辐射就到不了地面。如果太阳辐射遇到直径比波长小的空气分子,则辐射的波长愈短,散射得愈强。其散射能力与波长的对比关系是:对于一定大小的分子来说,散射能力与波长的四次方成反比,这种散射是有选择性的,称为分子散射,也叫蕾利散射(图2·7a)。例如,波长为0.7μm时的散射能力为1,那末波长为0.3μm时的散射能力就为30。因此,在太阳辐射通过大气时,由于空气分子散射的结果,波长较短的光被散射得较多。雨后天晴,天空呈青蓝色,就是因为太阳辐射中青蓝色波长较短,容易被大气散射的缘故。分子散射还有一个特点是质点散射对于其光学特性来说是对称的球形(图2·7a),在光线射入的方向(j =0°)及在相反的方向(j =180°)上散射是比垂直于射入光线方向上(j =90°及j =270°)的散射量大1倍。图2·7a中由极点到外围曲线的向径长度以假定的比例,表示此方向上所散射的总能量。
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
如果太阳辐射遇到粗粒,粗粒散射就失去对称的形式,而于射入光方向伸长。图2·7b是粗粒(水滴)散射的一种常见形式。在此种粗粒散射下,在射入光方向上的散射能量,是分别超过了在射入光线的相反方向上及其垂直方向上能量之2.37及2.85倍。散射质点愈大,这种偏对称的程度更加增大。如果太阳辐射遇到的直径比波长大一些的质点,辐射虽然也要被散射,但这种散射是没有选择性的,即辐射的各种波长都同样地被散射。这种散射称粗粒散射,也称米散射(图2·7b)。例如当空气中存在较多的尘埃或雾粒,一定范围的长短波都被同样的散射,使天空呈灰白色。这一结论,在图2·6的曲线3和曲线4中表现得很清楚。
3.大气的云层和尘埃对太阳辐射的反射
大气中云层和较大颗粒的尘埃能将太阳辐射中一部分能量反射到宇宙空间去。其中云的反射作用最为显著,太阳辐射遇到云时被反射一部分或大部分。反射对各种波长没有选择性,所以反射光呈白色。云的反射能力随云状和云的厚度而不同,高云反射率约25%,中云为50%,低云为65%,稀薄的云层也可反射10%—20%。随着云层增厚反射增强,厚云层反射可达90%,一般情况下云的平均反射率为50%—55%。
上述三种方式中,反射作用最重要,尤其是云层对太阳辐射的反射最为明显,另外还包括大气散射回宇宙以及地面反射回宇宙的部分;散射作用次之,形成了到达地面的散射辐射;吸收作用相对最小。以全球平均而言,太阳辐射约有30%被散射和漫射回宇宙,称之为行星反射率,20%被大气和云层直接吸收,50%到达地面被吸收(见图6·10)。
(三)到达地面的太阳辐射
到达地面的太阳辐射有两部分:一是太阳以平行光线的形式直接投射到地面上的,称为太阳直接辐射;一是经过散射后自天空投射到地面的,称为散射辐射,两者之和称为总辐射。
1.直接辐射
太阳直接辐射的强弱和许多因子有关,其中最主要的有两个,即太阳高度角和大气透明度。太阳高度角不同时,地表面单位面积上所获得的太阳辐射也就不同。这有两方面的原因:
(1)太阳高度角愈小,等量的太阳辐射散布的面积就愈大(图2·8a),因而地表单位面积上所获得的太阳辐射就愈小。(图2·8b)设有一水平地段AB,其面积为S′,太阳光线以h高度角倾斜地照射到它上面,在单位面积上每分钟所受到的太阳辐射能为I′。引一垂直于太阳光的平面AC,其面积为S,在此垂直受射面上的太阳辐射强度为I,则到达水平面AB与垂直受射面AC上的辐射量,将分别等于I′· S′和 I·S,显然这两个辐射量是相等的,即
I′·S′=I·S
太阳辐射最基本知识——辐射强度源处Cosi,接收处Sini
则:I′=Isinh (2·15)

我的更多文章

下载客户端阅读体验更佳

APP专享