岭回归分析及其SPSS实现方法
近日有医院的小伙伴问起岭回归分析的SPSS操作,在此与大家一起复习一下。
岭回归分析(RidgeRegression)是一种改良的最小二乘估计方法,它是用于解决在线性回归分析中自变量存在共线性的问题。什么?共线性是什么?共线性就是指自变量之间存在一种完全或良好的线性关系,进而导致自变量相关矩阵之行列式近似为0,导致最小二乘估计失效。此时统计学家就引入了k个单位阵(I),使得回归系数可估计。设么?没看懂,那就算了。
知道岭回归分析就是用来解决多重共线性的问题,就够了。在医学科研的实际工作中,往往不需要创造算法,会用算法就行。当然如果你有心研究其原理,那更是极好的。
下面我们还是通过实例来学习岭回归分析的应用条件和SPSS实习方法吧。用SPSS自带的例子(来自SPSS 20.0版的示例数据库,其他版本的就别找了),某研究者想了解B超下胎儿的身长、头围、体重与胎儿受精周数之间的关系,即B超测得上述参数之后,用它们来推测胎儿的受精时长(周数)。我们很容易想到用多重线性回归来解决,以胎儿周数为因变量,以身长、头围和体重为因变量,做回归之后我们发现,结果如下:

不会吧?!头围尽然与周龄成负相关,开玩笑啊。这个方程肯定是有问题,细心的读者也已经发现方差膨胀因子(VIF)大到200多了(VIF是用来判断自变量共线性的一种方法,如果大于10即认为存在较为严重的共线性)。现在该怎么办?岭回归该发挥作用了。
岭回归分析在SPSS中没有可供点击的对话框,我们需要写一段超级简单的语法来调用SPSS的宏。SPSS公司可能也觉得羞愧,
近日有医院的小伙伴问起岭回归分析的SPSS操作,在此与大家一起复习一下。
岭回归分析(RidgeRegression)是一种改良的最小二乘估计方法,它是用于解决在线性回归分析中自变量存在共线性的问题。什么?共线性是什么?共线性就是指自变量之间存在一种完全或良好的线性关系,进而导致自变量相关矩阵之行列式近似为0,导致最小二乘估计失效。此时统计学家就引入了k个单位阵(I),使得回归系数可估计。设么?没看懂,那就算了。
知道岭回归分析就是用来解决多重共线性的问题,就够了。在医学科研的实际工作中,往往不需要创造算法,会用算法就行。当然如果你有心研究其原理,那更是极好的。
下面我们还是通过实例来学习岭回归分析的应用条件和SPSS实习方法吧。用SPSS自带的例子(来自SPSS 20.0版的示例数据库,其他版本的就别找了),某研究者想了解B超下胎儿的身长、头围、体重与胎儿受精周数之间的关系,即B超测得上述参数之后,用它们来推测胎儿的受精时长(周数)。我们很容易想到用多重线性回归来解决,以胎儿周数为因变量,以身长、头围和体重为因变量,做回归之后我们发现,结果如下:

不会吧?!头围尽然与周龄成负相关,开玩笑啊。这个方程肯定是有问题,细心的读者也已经发现方差膨胀因子(VIF)大到200多了(VIF是用来判断自变量共线性的一种方法,如果大于10即认为存在较为严重的共线性)。现在该怎么办?岭回归该发挥作用了。
岭回归分析在SPSS中没有可供点击的对话框,我们需要写一段超级简单的语法来调用SPSS的宏。SPSS公司可能也觉得羞愧,





