SPSS分析技术:分段拟合;电业局如何通过简单的回归模型来预测居民用电量
2017-05-29 10:20阅读:
SPSS分析技术:分段拟合;电业局如何通过简单的回归模型来预测居民用电量
今天给大家介绍利用分段回归模型拟合的办法来处理一些特殊的变量关系。某些变量之间的关系非常有趣,不是恒久的线性或非线性关系,可能其中一段表现为线性,而另一段表现为非线性。例如,我们举一个每个人都有切身体会的例子,人的身高和年龄的关系,在3岁到10岁期间,它们基本是线性相关,而高中以后,身高基本定型,不再随年龄的增加而增长。对于这样的变量关系,在3到10岁期间,我们可以用一个线性方程来拟合年龄和身高的关系,而高中以后则需要换另一个方程,可以是线性的,也可以是非线性的,需要根据数据情况来选择。这就是分段回归模型的分析思路。
分段回归模型
对于相关关系在自变量取值区间上不是恒定不变的情况,我们可以只分析某一部分明确相关关系的数据,这样可以保证结果的简洁和稳定;当需要考虑整个自变量取值区间时,就必须要包含整个取值区间的数值,此时,如果整个区间可以用几个分段回归模型表达,那么就可以进行分段拟合。通常的做法是对每个部分进行单独拟合,但是这样做参数较多,且样本被人为分开,当样本量较小时会导致分析结果的准确性很差。
SPSS的非线性回归模块完美的解决了这个问题,可直接对分段函数进行直接拟合,以充分利用信息,提高模型的预测精度。由于原理简单,我们下面用一个具体的案例来介绍如何利用SPSS进行分段回归模型拟合。
生活案例
近几年,每年夏天关于全国用电紧张的新闻报道都会准时出现。造成用电紧张的原因很多,一方面是全球变暖这个总体大趋势的影响,人们需要用各种电器消暑降温;另一方面是科技的进步,各种空调冰箱等电器走进千家万户,用电量自然水涨船高。电量吃紧最紧张的就是国家电网,某地电业局打算通过过往数据的分析
今天给大家介绍利用分段回归模型拟合的办法来处理一些特殊的变量关系。某些变量之间的关系非常有趣,不是恒久的线性或非线性关系,可能其中一段表现为线性,而另一段表现为非线性。例如,我们举一个每个人都有切身体会的例子,人的身高和年龄的关系,在3岁到10岁期间,它们基本是线性相关,而高中以后,身高基本定型,不再随年龄的增加而增长。对于这样的变量关系,在3到10岁期间,我们可以用一个线性方程来拟合年龄和身高的关系,而高中以后则需要换另一个方程,可以是线性的,也可以是非线性的,需要根据数据情况来选择。这就是分段回归模型的分析思路。
分段回归模型
对于相关关系在自变量取值区间上不是恒定不变的情况,我们可以只分析某一部分明确相关关系的数据,这样可以保证结果的简洁和稳定;当需要考虑整个自变量取值区间时,就必须要包含整个取值区间的数值,此时,如果整个区间可以用几个分段回归模型表达,那么就可以进行分段拟合。通常的做法是对每个部分进行单独拟合,但是这样做参数较多,且样本被人为分开,当样本量较小时会导致分析结果的准确性很差。
SPSS的非线性回归模块完美的解决了这个问题,可直接对分段函数进行直接拟合,以充分利用信息,提高模型的预测精度。由于原理简单,我们下面用一个具体的案例来介绍如何利用SPSS进行分段回归模型拟合。
生活案例
近几年,每年夏天关于全国用电紧张的新闻报道都会准时出现。造成用电紧张的原因很多,一方面是全球变暖这个总体大趋势的影响,人们需要用各种电器消暑降温;另一方面是科技的进步,各种空调冰箱等电器走进千家万户,用电量自然水涨船高。电量吃紧最紧张的就是国家电网,某地电业局打算通过过往数据的分析








