刘徽
刘徽首先证明了《九章算术》中的球体积公式是不正确的,并在《九章算术》“开立圆术”注文中指出了一条推算球体积公式的正确途径。
刘徽创造了一个新的立体图形,他称之为“牟合方盖”,并指出:一旦算出牟合方盖的体积,球体积公式也就唾手可得。在一立方体内作两个互相垂直的内切圆柱。这两个圆柱体相交的部分,就是刘徽所说的“牟合方盖”。牟合方盖恰好把立方体的内切球包含在内并且同它相切。如果用同一个水平面去截它们,就得到一个圆(球的截面),和它的外切正方形(牟合方盖的截面)。
徽虽然没有推证出球体积公式, 但他所创用的特殊形式的不可分量方法,成为后来祖冲之父子在球体积问题上取得突破的先导。
祖冲之(公元429-500,如图)活跃于南朝宋、齐两代,出生于历法世家,本人做过南徐州(今镇江)从事史和公府参军,都是地位不高的小官,但他却成为历代为数很少能名列正史的数学家之一。祖冲之在公元462年创制了一部历法《大明历》,这在当时是最先进的历法.
祖冲之关于圆周率的贡献记载在《隋书
徽虽然没有推证出球体积公式, 但他所创用的特殊形式的不可分量方法,成为后来祖冲之父子在球体积问题上取得突破的先导。
祖冲之(公元429-500,如图)活跃于南朝宋、齐两代,出生于历法世家,本人做过南徐州(今镇江)从事史和公府参军,都是地位不高的小官,但他却成为历代为数很少能名列正史的数学家之一。祖冲之在公元462年创制了一部历法《大明历》,这在当时是最先进的历法.
祖冲之关于圆周率的贡献记载在《隋书
