CPA技术的产生,是源自对更高激光脉冲峰值功率的不断追求。峰值功率的提高受激光增益介质损伤阈值的限制,为了突破109
W瓶颈,人们寻求损伤阈值更高的增益介质,然而效果均不理想,激光峰值功率始终徘徊在1012
W量级。1985年,Rochester大学的Gerard
Mourou与Donna
Strickland将雷达中的CPA概念引入到激光领域,改变了这一现状,为脉冲峰值功率的进一步提高奠定了基础。
CPA技术的原理:首先利用展宽器(例如衍射光栅、棱镜等色散器件)在初始脉冲进入增益介质之前将其展宽:脉冲中低频成分走的路径要比高频成分要短(正啁啾),脉冲在时间上被拉宽,峰值功率得到降低。展宽器的色散量越大,脉冲被拉宽的程度越高,峰值功率降低越多;随后,展宽脉冲进入增益介质进行放大,由于脉冲已被展宽,可以提取更多的能量而不致使增益介质发生损伤;最后,放大脉冲进入压缩器(色散器件),压缩器的色散与展宽器的色散极性相反,此时放大脉冲中的啁啾可被部分或全部补偿,放大脉冲被压缩设定脉宽(甚至是傅里叶变换极限脉宽),脉冲峰值功率便能得到极大的提高。
CPA技术的原理:首先利用展宽器(例如衍射光栅、棱镜等色散器件)在初始脉冲进入增益介质之前将其展宽:脉冲中低频成分走的路径要比高频成分要短(正啁啾),脉冲在时间上被拉宽,峰值功率得到降低。展宽器的色散量越大,脉冲被拉宽的程度越高,峰值功率降低越多;随后,展宽脉冲进入增益介质进行放大,由于脉冲已被展宽,可以提取更多的能量而不致使增益介质发生损伤;最后,放大脉冲进入压缩器(色散器件),压缩器的色散与展宽器的色散极性相反,此时放大脉冲中的啁啾可被部分或全部补偿,放大脉冲被压缩设定脉宽(甚至是傅里叶变换极限脉宽),脉冲峰值功率便能得到极大的提高。
