【课标解读】十大核心概念之运算能力
2017-06-26 13:38阅读:
【课标解读】十大核心概念之运算能力
一、对运算能力的认识
根据一定的数学概念、法则和定理,由一些已知量通过计算得出确定结果的过程,称为运算。能够按照一定的程序与步骤进行运算,称为运算技能。不仅会根据法则、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件寻求正确的运算途径,称为运算能力。
《课程标准(2011年版)》指出:运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
运算能力并非一种单一的、孤立的数学能力,而是运算技能与逻辑思维等的有机整合。在实施运算分析和解决问题的过程中,要力求做到善于分析运算条件,探究运算方向,选择运算方法,设计运算程序,使运算符合算理,合理简洁。换言之,运算能力不仅是一种数学的操作能力,更是一种数学的思维能力。
《课程标准(2011年版)》是在总目标的四个方面之一的“数学思考”中提出运算能力的:“建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维和抽象思维。”这说明运算能力是数学思考的重要内涵。不仅如此,运算能力对《课程标准(2011年版)》在总目标中提出的其他三个方面——知识技能、问题解决和情感态度的目标的整体实现,同样是不可缺少的基本条件。
二、运算能力的培养与发展
运算能力的培养与发展是一个长期的过程,应伴随着数学知识的积累和深化。正确理解相关的数学概念,是逐步形成运算技能、发展运算能力的前提。运算能力的培养与发展不仅包括运算技能的逐步提高,还应包括运算思维素质的提升和发展。在义务教育阶段,运算能力的培养、发展要经历如下过程:
1.由具体到抽象
第一学段理
解万以内的数,初步认识小数和分数,初步学习整数的四则运算,以及简单的分数和小数的加减运算。第二学段认识万以上的数,进一步学习整数的四则运算(包括混合运算),小数和分数的四则运算(包括混合运算),了解并初步应用运算律。第三学段掌握有理数的加、减、乘、除、乘方及简单的混合运算;掌握合并同类项和去括号的法则,进行简单的整式加法、减法和乘法运算;利用乘法公式进行简单计算;进行简单的分式加、减、乘、除运算;了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算;解
一元一次方程、可化为一元一次方程的分式方程;掌握代人消元法和加减消元法,解二元一次方程组;用配方法、公式法、因式分解法解数字系数的一元二次方程;解数字系数的一元一次不等式。
无论是学习和掌握数与式的运算,还是解方程和解不等式的运算,一开始总是和具体事物相联系的,之后逐步脱离具体事物,抽象成数与式、方程与不等式的运算。直至高中阶段进行更为抽象的符号运算,如集合的交、并、补等运算,命题的或、且、非等运算。运算思维的抽象程度,是运算能力发展的主要特征之一。
2.由法则到算理
学习和掌握数与式的运算,解方程和解不等式的运算,在反复操练、相互交流的过程中,不仅会逐步形成运算技能,还会引发对“怎样算?怎样算的好?为什么要这样算?”等一系列问题的思考。这是由法则到算理的思考,使运算从操作的层面提升到思维的层面,这是运算能力发展的重要内容。
《课程标准(2011年版)》规定了一系列与算理相关的内容。
第二学段:探索并了解运算律(加法的交换律和结合律、乘法的交换律和结合律、乘法对加法的分配律),会应用运算律进行一些简便运算。了解等式的性质,能用等式的性质解简单的方程。
第三学段:除了“理解有理数的运算律,能运用运算律简化运算”外,算理的内容和要求进一步强化,在学习方程解法之前,要求“掌握等式的基本性质”;在学习不等式解法之前,要求“探索不等式的基本性质”;为此,《课程标准(2011年版)》提供了例53:小丽去文具店买铅笔和橡皮。铅笔每支0.5元,橡皮每块0.4元。小丽带了2元钱,能买几支铅笔、几块橡皮?在此例中,不仅给出了详细的解题方案和过程,还指出:这是一个求整数解的不等式问题,并且问题是开放的,通过列表具体计算,有助于学生直观理解不等式。对于初中的学生,这个问题是生活常识,但希望学生能通过这个例子学会用数学的思维方式看待生活中的问题。在一元二次方程的内容中,《课程标准(2011年版)》不仅设置了“能用配方法、公式法、因式分解法解数字系数的一元二次方程”,而且增加了“会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等”,“了解一元二次方程的根与系数的关系”等内容,表明不仅要学习和掌握解一元二次方程的运算方法,更要思考和领悟解一元二次方程的算理。
3.由常量到变量
函数在第三学段是重要的内容。函数概念的引入,运算对象从常量提升到变量。运算的内容更加丰富多彩,《课程标准(2011年版)》中不仅有“能确定简单实际问题中函数自变量的取值范围,并会求出函数值”“会利用待定系数法确定一次函数的表达式”“会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标”等直接进行运算的内容;还包括与运算密切相关的内容,如:“能结合图象对简单实际问胚中的函数关系进行分析”“用适当的函数表示法刻画简单实际问题中变量之间的关系”“结合对函数关系的分析,能对变量的变化情况进行初步讨论”“根据一次函数的图像和表达式y=kx+b(k≠0)探索并理解k>0和k<0时,图像的变化情况”“能根据已知条件确定反比例函数的表达式”“根据图像和表达式 探索并理解k>0或k<0时,图像的变化情况”“知道给定不共线三点的坐标可以确定一个二次函数。”
由常量到变量,表明运算思维产生了新的飞跃,运算能力也发展到一个新的高度。
4.由单向思维到逆向、多向思维
逆向思维是数学学习的一个特点。在第二学段,《课程标准(2011年版)》规定“在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。”在第三学段,又增加了乘方与开方的互逆关系。到高中阶段,更有指数与对数、微分与积分等互逆关系。运算的互逆关系,是逆向思维的重要表现形式之一。
运算也是一种推理,在实施运算分析和解决问题的过程中,“由因导果”和“执果索因”的推理模式也是经常要用到的,表现为有效探索运算的条件与结论,已知与未知的相互联系及相互转化,思维方向是互逆的,更是相辅相成的。
在实施运算的过程中,还会遇到多因素的情况,各个因素相互联系,相互制约,又相辅相成,更加需要不同的思维方向、不同的解题思路和不同的解题方法,通过比较,加以择优选用。这是运算思维达到一个新的高度的重要标志,是运算能力的培养与发展的高级阶段。
由于思维定势的消极作用,逆向思维和多向思维的难度较大,在实施运算的过程中,对分析运算条件,探究运算方向,选择运算方法,设计运算程序等各个环节都要引导学生进行周密的思考,力求使运算符合算理,达到正确熟练、灵活多样、合理简洁,实现运算思维的优化及运算能力的逐步提高。