新浪博客

拓扑学

2011-08-03 07:18阅读:

拓扑学


求助编辑百科名片

拓扑学是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ?α的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量
目录
拓扑定义
学科方向
拓扑学由来
拓扑性质
拓扑发展
发展简史
  1. 形势分析学
  2. 一般拓扑学
  3. 代数拓扑学
  4. 同伦论研究
  5. 从微分拓扑学到几何拓扑学
学科关系
学科作用
初等实例
  1. 柯尼斯堡的七桥问题
  2. 欧拉的多面体公式与曲面的分类
  3. 四色问题
  4. 纽结问题
  5. 维数问题
  6. 布线问题
  7. 向量场问题
  8. 不动点问题
简易的四色定理证明
  1. 一维研究
  2. 二维组合
  3. 三维扩展
拓扑定义
学科方向
拓扑学由来
拓扑性质
拓扑发展
发展简史
  1. 形势分析学
  2. 一般拓扑学
  3. 代数拓扑学
  4. 同伦论研究
  5. 从微分拓扑学到几何拓扑学
学科关系
学科作用
展开

编辑本段拓扑定义

   拓扑学 拓扑学
拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。 拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。

编辑本段学科方向

  由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。19世纪末,在拓扑学的孕育阶段,就已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。
  拓扑学也是数学的一个分支,研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。[英topology]
  举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,下面将要讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。
  简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。

编辑本段拓扑学由来

  几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。
  在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。
   拓扑学 哥尼斯堡七桥问题
哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。
  1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来

我的更多文章

下载客户端阅读体验更佳

APP专享