解析函数论的奠基人
魏尔斯特拉斯以其富有独创性的方法,首次以不依赖于几何直观的严格方式阐述和论证了复变函数论,使这一19世纪中成就最辉煌的数学分支进入了深入发展的阶段.他在这方面的工作不仅见诸论文[2,3,4,5],而且更多体现在他讲授的课程中[12,15,18].
解析性、解析开拓与完全解析函数
魏尔斯特拉斯研究解析函数的出发点是解析性概念.如果定义于复平面的区域D中的复值函数f在D的每个点的一个邻域内可展开为幂级数,则称f在D内解析.这样的函数在复意义下可导.他得到不恒等于零的解析函数f在其零点a处的分解式
f(z)=(z-a)ng(z)

0,则在原点邻域中F可表示为