悖论集锦合集(那些好玩的悖论)
2011-08-17 13:17阅读:
想整理这些悖论是因为以前在《三体2》中看到的费米悖论,刘慈欣笔下的罗辑在受到叶文洁启发多年后悟出的宇宙伦理学合理的解释了费米悖论,不算完美但很精彩。历史上有名的一些悖论在科学道路上的发展起到了极大的作用,至少很多投身理论数学、物理还有天文研究的人都被这些悖论吸引过,痴迷过,也会让我们这些闲暇的酱油君们装装科学控,好奇愉悦一下,总之,向悖论致敬。
费米悖论
1950年的一天,诺贝尔奖获得者、物理学家费米在和别人讨论飞碟及外星人问题时,突然冒出一句:“他们都在哪儿呢?”
这句看似简单的问话,但这就是著名的“费米悖论”。
“费米悖论”隐含之意是,理论上讲,人类能用100万年的时间飞往银河系各个星球,那么,外星人只要比人类早进化100万年,现在就应该来到地球了。换言之,“费米悖论”表明了这样的悖论:A.外星人是存在的——科学推论可以证明,外星人的进化要远早于人类,他们应该已经来到地球并存在于某处了;B.外星人是不存在的——迄今为止,人类并未发现任何有关外星人存在的蛛丝马迹。
三元悖论
三元悖论(The Impossible
Trinity),也称三难选择,它是由美国经济学家保罗·克鲁格曼就开放经济下的政策选择问题所提出的,其含义是:本国货币政策的独立性,汇率的稳定性,资本的完全流动性不能同时实现,最多只能同时满足两个目标,而放弃另外一个目标。
外祖母悖论
如果一个人真的“返回过去”,并且在其外祖母怀他母亲之前就杀死了自己的外祖母,那么这个跨时间旅行者本人还会不会存在呢?这个问题很明显,如果没有你的外祖母就没有你的母亲,如果没有你的母亲也就没有你,如果没有你,你怎么“返回过去”,并且在其外祖母怀他母亲之前就杀死了自己的外祖母。
罗素悖论
把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:
P={A∣A∈A} Q={A∣A∉A} ,问,Q∈P 还是 Q∈Q?
若Q∈P,那么根据第一类集合的定义,必有Q∈Q,但是Q中任何集合都有A∉A的性质,因为Q∈Q,所以Q¢Q,引出矛盾。若Q∈Q,根据第一类集合的定义,必有Q∈P,而显然P∩Q=∉,所以Q∉Q,还是矛盾。
这就是著名的“罗素悖论”。罗素悖论还有一些较为通俗的版本,如下面的理发师悖论。
理发师悖论
理发师悖论被认为是罗素悖论的一个通俗讲法。
在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
说谎者悖论
说谎者悖论(1iar paradox or Epimenides’ paradox)
是最古老的语义悖论。也公元前6世纪古希腊哲学家伊壁孟德
所创的四个悖论之一。是关于“我正在撒谎”的悖论。具体为:如果他的确正在撒谎,那么这句话是真的,所以伊壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的,因而伊壁孟德正在撒谎。
唐·吉诃德悖论
小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。 问: 你来这里做什么?
如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。 一天,有个旅游者回答—— 我来这里是要被绞死。
这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
芝诺悖论
阿基里斯是古希腊神话里跑的最快的人,但如果他前面有一只乌龟(正从A点向前爬),他永远也追不上这只乌龟.理由如下:他要追上乌龟必须要经过乌龟出发的地方A,但当他追到这个地方的时候,乌龟又向前爬了一段距离,到了B点,他要追上乌龟又必须经过B点,但当他追到B点的时候,乌龟又爬到了C点......所以阿基里斯永远也追不上乌龟!
二分法悖论
这也是芝诺提出的一个悖论:当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一、以至可以无穷地划分下去。因此,这个物体永远也到达不了D。这些结论在实践中不存在,但是在逻辑上无可挑剔。
你肯定想到了庄子,因为在《庄子天下篇》中,庄子提出:“一尺之棰,日取其半,万世不竭。”
大意也是如此。
柏拉图与苏格拉底悖论
柏拉图调侃他的老师:“苏格拉底老师下面的话是假话。”苏格拉底回答说:“柏拉图上面的话是对的。”不论假设苏格拉底的话是真是假,都会引起矛盾。
岛国的悖论
' 如果你精神失常,那么你可以领取国家福利;但是要申请国家福利,你必须头脑清醒.'
相对悖论
“‘世上没有绝对的真理‘。这是绝对的吗?”
苏格拉底悖论
我现在唯一知道的事就是我一无所知。
鸡蛋的悖论
先有鸡还是先有蛋?
康托尔悖论
据康托尔集合理论,任何性质都可以决定一个集合,这样所有的集合又可以组成一个集合,即“所有集合的集合”(大全集)。显然,此集合应该是最大的集合了,因此其基数也应是最大的,然而其子集的集合的基数按“康托尔定理”又必然是更大的,那么,“所有集合的集合”就不成其为“所有集合的集合”。
游行队伍悖论
游行队伍悖论也叫运动场悖论。首先假设在操场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。
◆◆◆◆观众席A
▲▲▲▲队列B
▼▼▼▼队列C
B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位。
◆◆◆◆观众席A
▲▲▲▲队列B……向右移动
▼▼▼▼队列C……向左移动
而此时,对B而言C移动了两个距离单位。也就是,队列既可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。因此队列是移动不了的。
飞矢不动悖论
设想一支飞行的箭。在每一时刻,它位于空间中的一个特定位置。由于时刻无持续时间,箭在每个时刻都没有时间而只能是静止的。鉴于整个运动期间只包含时刻,而每个时刻又只有静止的箭,所以芝诺断定,飞行的箭总是静止的,它不可能在运动。
上述结论也适用于时刻有持续时间的情况。对于这种情况,时刻将是时间的最小单元。假设箭在这样一个时刻中运动了,那么它将在这个时刻的开始和结束位于空间的不同位置。这说明时刻具有一个起点和一个终点,从而至少包含两部分。但这明显与时刻是时间是的最小单元这一前提相矛盾。因此,即使时刻有持续时间,飞行的箭也不可能在运动。总之,飞矢不动。
箭悖论的标准解决方案如下:箭在每个时刻都不动这一事实不能说明它是静止的。运动与时刻里发生什么无关,而是与时刻间发生什么有关。如果一个物体在相邻时刻在相同的位置,那么我们说它是静止的,反之它就是运动的。
理查德悖论
法国第戎中学教师理查德在1905年发表了一个悖论,大意如下:法语中某些片语表示实数,比如“一个圆的圆周与直径之比”就表示实数π。法语字母也象英语字母一样有一定的顺序,所以我们可以把所有片语按照字母顺序排列,然后按照片语中字母的多少排列,少的在前,多的在后。这样我们把能用片语表达的实数排成一个序列,al,a2,a:,……。于是就得到了所有能用有限多字(字母)定义的数了。它们构成了一个可数集合E。现在我们提出一个规则把这个序列改变一下造成一个数来:“设E中第n个数的第n位为p,我们造一个实数如下:其整数部分为0,如果p不是8或9;其第n位小数为p+1,要是p是8或9的话,则第n位变成1”。这个实数显然不属于E,因为它和E中每个数都不一样。但是它们却可以由上面有限多个字组成的话来表示,因此应该属于E,这就出现矛盾。
希尔伯特大旅馆悖论
这个悖论是中著名德国数学家希尔伯特提出的:假如有一个拥有可数无穷多个房间的旅馆,且所有房间都已按每房间住一人的规则客满了。设想此时有一个客人想要入住该旅馆。店主请房客们换一换房间:1号房间的房客搬到的2号房间,2号房间的房客搬到的3号房间,依此类推,直到每一位房客都从一个房间搬到了下一个房间为止,这样就空出了一个房间留给了新来的客人。这就产生了矛盾:旅馆既满员了,又没满员。
伽利略悖论
为了反驳亚里士多德的自由落体速度取决于物体的质量的理论,伽利略构造了一个简单的思想实验。根据亚里士多德的说法,如果一个轻的物体和一个重的物体绑在一起然后从塔上丢下来,那么重的物体下落的速度快,两个物体之间的绳子会被拉直。这时轻的物体对重物会产生一个阻力,使得下落速度变慢。但是,从另一方面来看,两个物体绑在一起以后的质量应该比任意一个单独的物体都大,那么整个系统下落的速度应该最快。这个矛盾证明了亚里士多德的理论是错误的。
或者这样表述:大家都知道“整体大于部分”这个真理的,可事实又是怎样的呢?请看下面的对应:
整数:……-5,-4,-3,-2,-1,0,1,2,3,4,5……
偶数:……-10,-8,-6,-4,-2,0,2,4,6,8,10……
因为偶数是整数的一部分,所以“整数”部分应大于“偶数”部分,但当上述的两列数是无穷多个时,就会出“部分等于整体”的情况。
EPR悖论
A.爱因斯坦、B.波多尔斯基和N.罗森1935年为论证量子力学的不完备性而提出的一个悖论。又称 EPR论证。EP R
是这三位物理学家姓的头一个字母。这一悖论涉及到如何理解微观物理实在的问题。
爱因斯坦等人认为,如果一个物理理论对物理实在的描述是完备的,那么物理实在的每个要素都必须在其中有它的对应量,即完备性判据。当我们不对体系进行任何干扰,却能确定地预言某个物理量的值时,必定存在着一个物理实在的要素对应于这个物理量,即实在性判据。他们认为,量子力学不满足这些判据,所以是不完备的。
双生子佯谬
双生子佯谬是一个有关狭义相对论的思想实验。内容是这样的:有一对双生兄弟,其中一个跨上一宇宙飞船作长程太空旅行,而另一个则留在地球。结果当旅行者回到地球后,我们发现他比他留在地球的兄弟更年青。这个结果是由狭义相对论所推测出的(移动时钟的时间膨胀现象),而且是能够透过实验来验证:我们能够探测到于大气层上层产生的μ介子。如果没有时间膨胀,那些μ介子在未到达地面之前就已经衰变了。
贝克莱悖论
1734年,大主教乔治•贝克莱(George Berkeley)
“渺小的哲学家”之名出版了一本标题很长的书《分析学家;或一篇致一位不信神数学家的论文,其中审查一下近代分析学的对象、原则及论断是不是比宗教的神秘、信仰的要点有更清晰的表达,或更明显的推理》。在这本书中,贝克莱对牛顿的理论进行了攻击。例如他指责牛顿,为计算比如说x2的导数,先将x取一个不为0的增量Δx,由(x
+ Δx)2 − x2 ,得到2xΔx + (Δx2) ,后再被Δx除,得到2x + Δx,最后突然令Δx = 0 ,求得导数为2x
。这是“依靠双重错误得到了不科学却正确的结果”。因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是“已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。数学史上把贝克莱的问题称之为“贝克莱悖论”。
笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。
投票悖论
早在十八世纪法国思想家孔多赛就提出了著名的“投票悖论”,也称做是“孔多塞悖论”:假设甲乙丙三人,面对ABC三个备选方案,有如图的偏好排序。由于甲乙都认为B好于C,根据少数服从多数原则,社会也应认为B好于C;同样乙丙都认为C好于A,社会也应认为C好于A。所以社会认为B好于A。但是,甲丙都认为A好于B,所以出现矛盾。投票悖论反映了直观好的民主机制潜在的不协调。
鳄鱼困境
一个鳄鱼偷了一个父亲的儿子,它保证如果这个父亲能猜出它要做什么,它就会将儿子还给父亲。那么如果这个父亲猜“鳄鱼不会将儿子还给他”,那会怎样?
意识自由
如果上帝无所不能并在造出我们之前就已经知道我们会做什么,那么我们如何才能够拥有自由意识呢?
沙堆悖论
有一堆1,000,000颗沙粒组成的沙堆。如果我们拿走一颗沙粒,那么还是有一堆;如果我们再拿走一颗沙粒,那么还是一堆。如果我们就这样一次拿走一颗沙粒,那么当我们们取得只剩下一颗沙粒,那么它还是一堆吗?
全能悖论
上帝能造出一个重到他自己也举不起的东西吗?如果他能,那么他不能举起这个东西,就证明他力量方面不是全能的。如果他不能,那么不能创造出这样一个东西,就证明他在创造方面不是全能的。
埃庇米尼得斯悖论
埃庇米尼得斯在一首诗中写道:“克里岛的人,人人都说谎,邪恶的野兽,懒惰的胴网!”然而埃庇米尼得斯自己却是个克里岛人。如果埃庇米尼得斯是一个克里岛人,并且是一个说谎者的话,那么他的诗中所说的“克里岛的人,人人都说谎”就是一个谎话。这就意味着所有的克里岛人都是诚实的人,那么埃庇米尼得斯所言就是实话。那么这个悖论又回到了开始。
无法阻挡的力量悖论
当一个无法阻挡的力量,碰到了一个无法移动的物体?如果这个力量移动了物体,那么这个物体就不是无法移动的。如果这个力量没有移动物体,那么这个无法阻挡的力量就被挡了下来。