| 三十一、分解质因数法 |
| 原文网址:http://hi.baidu.com/talenty/home |
| 通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。 分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。 例1 一块正方体木块,体积是1331立方厘米。这块正方体木块的棱长是多少厘米?(适于六年级程度) 解:把1331分解质因数: 1331=11×11×11 ![]() 答:这块正方体木块的棱长是11厘米。 |



