原文地址:http://baike.sogou.com/v55243120.htm
在数学中, 魏尔斯特拉斯函数(Weierstrass function)是一类处处连续而处处不可导的实值函数。魏尔斯特拉斯函数是一种无法用笔画出任何一部分的函数,因为每一点的导数都不存在,画的人无法知道每一点该朝哪个方向画。魏尔斯特拉斯函数的每一点的斜率也是不存在的。魏尔斯特拉斯函数得名于十九世纪的德国数学家卡尔•魏尔斯特拉斯(Karl Theodor Wilhelm Weierstrass ; 1815–1897)。
历史上,魏尔斯特拉斯函数是一个著名的数学反例。魏尔斯特拉斯之前,数学家们对函数的连续性认识并不深刻。许多数学家认为除了少数一些特殊的点以外,连续的函数曲线在每一点上总会有斜率。魏尔斯特拉斯函数的出现说明了所谓的“病态”函数的存在性,改变了当时数学家对连续函数的看法
【具体介绍】
德国数学家维尔斯特拉斯(Karl Weierstrass,1815-1897)于1872年(可能在1861年已经构造,但1872年才正式发表)利用函数项级数构造出了人们认识到的第一个处处连续而处处不可导的函数,为上述猜测做了一个否定的终结。
在维尔斯特拉斯的原始论文中,这个函数被定义为:
screen.width-333)this.width=screen.width-333' border=0>
这里0 < a < 1, b是奇整数,且
screen.width-333)this.width=screen.width-333' border=0>
这个构造过程,连同处处不可导的证明,发表在维尔斯特拉斯的论文(“Königliche Akademie der Wissenschaften” on July 18, 1872.)中
在数学中, 魏尔斯特拉斯函数(Weierstrass function)是一类处处连续而处处不可导的实值函数。魏尔斯特拉斯函数是一种无法用笔画出任何一部分的函数,因为每一点的导数都不存在,画的人无法知道每一点该朝哪个方向画。魏尔斯特拉斯函数的每一点的斜率也是不存在的。魏尔斯特拉斯函数得名于十九世纪的德国数学家卡尔•魏尔斯特拉斯(Karl Theodor Wilhelm Weierstrass ; 1815–1897)。
历史上,魏尔斯特拉斯函数是一个著名的数学反例。魏尔斯特拉斯之前,数学家们对函数的连续性认识并不深刻。许多数学家认为除了少数一些特殊的点以外,连续的函数曲线在每一点上总会有斜率。魏尔斯特拉斯函数的出现说明了所谓的“病态”函数的存在性,改变了当时数学家对连续函数的看法
【具体介绍】
德国数学家维尔斯特拉斯(Karl Weierstrass,1815-1897)于1872年(可能在1861年已经构造,但1872年才正式发表)利用函数项级数构造出了人们认识到的第一个处处连续而处处不可导的函数,为上述猜测做了一个否定的终结。
在维尔斯特拉斯的原始论文中,这个函数被定义为:
screen.width-333)this.width=screen.width-333' border=0>
这里0 < a < 1, b是奇整数,且
screen.width-333)this.width=screen.width-333' border=0>
这个构造过程,连同处处不可导的证明,发表在维尔斯特拉斯的论文(“Königliche Akademie der Wissenschaften” on July 18, 1872.)中
