为什么太空行走前要吸氧排氮
2008-10-05 18:50阅读:
航天员在出仓进行太空行走前几个小时只能吸入纯氧,尽量排出体内的氮气,否则出仓后将会遇到极大的危险。问什么航天员必须经过这个过程才能进行太空行走呢?本文为将为您解答航天员必须吸氧排氮的原因。
太空行走的特殊气压条件
人类在地球上活动,始终承受着来自大气层的压力。这个压力的强度通常为1个大气压,在高原和洼地上会略有不同。人体已经对这种压力非常适应。人类的生存需要吸入氧气,但地球上的空气中大部分都是氮气。
太空船内人为设置了与地面相同的气压,但是用于太空行走的航天服内的压力只有正常气压的30-40%。这是什么原因呢?如果设计成正常的气压值会有两方面影响:一是能量消耗较大,二是不方便航天员的活动。航天服内的气压主要靠内部膨胀层供气保持压力,如果压力过大则会导致航天员的关节部分很难弯曲无法活动。
吸氧排氮的作用
如果未经过吸氧排氮的航天员,骤然进入低压
状态,体内残留的大量氮气会引起血管栓塞进而威胁生命安全。这是因为溶解于体液中的氮气会由于气压的突然降低而迅速地变为气泡,实际上人类遭遇太空探索之前就发现了这种危险。在早期人类潜水探索中,有大量潜水员回到陆地后突然死亡,后来经过医学解剖才明白了其中的问题。与太空活动相反,海底压力远大于地面;而潜水员骤然从海底返回陆地就会出现突然低压状况,同样会造成体内氮气膨胀栓塞。因此这种情况一早被被命名为“潜水症(the
bends,又名减压症Decompression
sickness,简称DCS)”。一般潜水超过100米深的潜水员升到海面后必须马上进入减压舱,慢慢减低压力等身体适应后方能出来。这样就能有效避免发生潜水症。
而航天员的情况则和潜水员正好相反,进入工作环境马上就会出现低压区。所以必须在出仓之前就做好相应的准备。在出仓前几小时只能呼吸纯氧,这样可以慢慢排掉身体内多余的氮气。避免出现潜水症威胁生命安全。
以上稿件转载自
http://www.7story.com/Html/kxts/22120394976.html,作者:朱江明
如果上面的解释看了不过瘾的话,相信下边这段摘自《神舟:载人航天的故事》一书的短文会更清楚地解释吸氧排氮的重要性。
由于气体在液体中有一定的溶解性,所以人体组织和体液中都融有一定气体。人在进入低压环境时,人体组织和体液中溶解的气体就会分离出来,在血管内形成气泡,如果气泡过大过多会压迫人体内部的组织,使某些组织受损,或在血管内形成气栓堵塞血管,这样就引发各种病症,航天医学中称之为减压病。
体内产生的气泡的气体,主要是溶解在体液组织里的氮气。人从呼吸中吸入的气体是外界空气,它的主要成分是氮气,其次是氧和二氧化碳。氧和二氧化碳在血液中绝大部分(99%以上)与血红蛋白的缓冲物质分别作化学结合,只有很少一部分(不足1%)呈物理性溶解。而氮气不仅不能被身体分解,而且在血液和组织液中溶解度较高,所以它就成为产生气泡的主要气体。而这些氮气在人体中不会迅速的通过血液带到肺部排出体外,因而容易形成气泡,出现减压病。
这种情况之下,航天员在减压前,预先都要吸进纯氧,即在纯氧环境中停留一定时间(2~4小时),使体内氮气释放出来,这个过程称为吸氧排氮。一般在纯氧环境中吸氧排氮4小时后,大体上可以使人体内的95%以上溶解的氮清除掉,这样就大大减少发生减压病的机会。
另一种压力制度是舱内保持1/3的大气压力,舱内气体是纯氧。美国的水星号、双子星座、阿波罗飞船,都是使用这种压力制度。这种压力制度使得舱压的调节相对简单,而且由于舱体内外压差较小,使得舱内气体的泄露量小,同时在穿着低压航天服前不需要吸氧排氮(仅在发射前吸氧排氮3小时)。但是人体长时间呼吸纯氧会抑制红细胞的生长,对眼鼻有刺激作用。更为严重的是舱内纯氧容易引起火灾,因为许多在氧氮混合条件下不易燃的材料在纯氧条件下会变得易燃。
1967年1月27日,阿波罗1号在作登月舱充纯氧试验时,因电线碰擦引起大火,当营救人员打开舱门,三个最优秀的航天员都已被燃烧所产生的剧毒气体熏死了。随后“阿波罗”飞船作了改进,发射时采用1/3大气压的60%氧和40%氮的混合气,入轨后仍用100%氧气。但这大大增加了设计难度,因为要采用同时控制两种气体的压强和比率的设备,仅此登月舱就增加了一吨的重量。
在密闭座舱中,为了不断补充人体消耗和座舱泄露的气体,维持舱内压力平衡,舱内备有氧、氮气体储存系统。氧、氮气体储存方式一般有三种。一种是将其作为高压气态保存,短期载人航天器一般用这种方法。第二种是采用液化的方法,将氧和氮置于低温之下,使其成为液态进行储存,这种方式结构紧凑,重量轻。第三种实际上是利用碱金属超氧化物经过一系列反应产生氧气,这种方式常称为化学贮存方式。氧气产量的多少常通过舱内的水气含量和二氧化碳含量来控制。
载人航天时舱内温度如不加控制,会逐渐升高。使座舱温度升高的原因有很多,航天员的人体代谢过程会产生热,舱内的仪表设备运行的时候会产生热,飞船上升、返回时传入舱内的气动力产生的热以及飞船运行时太阳辐射传入舱内的热,这些原因都会使舱温升高。载人航天器都配备有完善的温度控制系统,使舱内温度始终控制在人感到舒服的范围内。温度控制的方法基于防止、减少外界热传入和积极地将舱内产生的废热排出舱外的思想。
常用的一种散热方法是水蒸发法。在真空的环境下,水在1.7~7.3摄氏度的低温可以沸腾形成蒸气,水蒸发时会吸收大量的热量。因此可将水输入到热交换器,通过低温蒸发,便将热排出舱外。短时间飞行常用这种方法。而长时间飞行可用升华器、辐射器方法散热。
航天员呼出的气体和排除的汗液都含有一定量的水蒸气,如果不采取措施将这些水蒸气清除的话,航天员会因为环境湿度太大而感觉不舒服,而且过高的湿度对舱内的仪表设备运行也是不利的。飞船中常用的去湿方法是采用分子筛材料吸附舱内空气中的水蒸气,然后在真空条件下解析去湿。
除了水蒸气载人航天器内还有人体代谢产生的有害物质,特别是蛋白质代谢分解的有害产物,再加上舱内设备中非金属材料的挥发物。这些物质对航天员的影响不只是舒服与否,更重要的是它们作为一种污染源,有可能影响航天员的身体健康。尤其是人体代谢产生的有害物质危害更大,如呼吸时排出的二氧化碳、一氧化碳、甲醇、挥发性脂肪酸等;胃肠道排出的有害物质甲烷、硫化氢、甲硫醇、吲哚等;出汗时汗液中的有害挥发物胺、氨、苯酸等。
为什么我们在地球上不必担心这些有害物质?生活在地球上的人,其居住环境中一般都有门窗与外界相通,这些有害物质不断地排出室外,与周围大气相混合,不会影响人体健康。而在密闭舱中就不同了,如一个不吸烟的青年人,一昼夜可排放出一氧化碳10毫克,而一个航天员在密闭舱平均占有一个立方多的空间,生活一昼夜产生的一氧化碳即可达到对人体有害的程度。
在航天器中要尽量减少这些物质,消除污染。人体排出的代谢产物是难以避免的,但座舱内非金属材料的分解产物,在一定程度上是可以控制或减少的,这一般是通过选用一些挥发物少的非金属材料作为航天材料。如美国的“阿波罗”飞船选材时,对所有备选的非金属材料进行有害物质排放量测量试验,淘汰那些排放量超标的材料。
对于无法避免的污染物,一般采用吸收、过滤、催化等方法进行消除。如人体代谢的重要产物二氧化碳,常采用吸收剂或分子筛进行消除,微量污染物,如汗液及座舱材料挥发物可采用活性炭进行吸附消除,但对于分子小、沸点低的污染物如一氧化碳、甲烷等不易吸收,可以采用催化燃烧的方法消除。
水对有生命的生物体是极为重要的。生活在宇宙空间的航天员,也需要供给生活用水和饮食用水。载人航天器内的供水系统是采用多种方法解决的。航行时间短的,一般采用储水器从地面携带净水到太空。储水器采用橡胶囊或金属风箱式可折叠水箱,囊内充有一定量的氮,在失重条件下增加囊内压力,水即可排出,且储水方式简单易行。水箱的容积与航天时间长短、人数多少、飞船载重量等相适应。氢氧燃料电池产生的水也是供水的一种,这种水经过冷却,温度下降到18~24℃,再经过消毒器消毒、净化后送入储水箱。
载人航天器在太空飞行时,水处于失重状态,不会自行从水箱中流出,因此供水的水箱都装有增压装置,加压后水即可流出。
在类似空间站这种长期的载人航天器,除了地面上定期送水,但这样做是非常不经济的。而且如果由于某种原因水不能及时送到,那航天员的生命就会出现危机。所以在这种航天器上,水是由它自己“生产”的。
我们知道地球上的水是在不停地循环着。海洋中的水被蒸发到空气中形成云,云又转换为雨降落到地面上,雨水汇集成河流最后又回到海洋。在这个循环过程中自然界的微生物和土壤起着对地面上的水进行净化的作用。航天器内“生产”水的过程正是模拟这么一个过程。水的来源是航天器中一切可以收集到的水,经过净化器的处理成为了航天员的生活用水。
当你在航天器中喝水时,千万不要去想水的来源。因为这些水是从航天器中各个地方收集而来的,包括燃料电池产生的冷凝水、洗漱用水甚至排尿以及上面提到的水蒸气等。如果仔细收集,基本可以实现航天器的自给自足。这也许听起来比较恶心,但是事实上,经过空间站的净化处理器后的水,可能要比地球上我们多数人喝的水都要干净。
在回过头来看看水循环系统,并不是单独存在的,它与其他系统的也有着联系,正如地球环境一样,水的循环与大气、生物有着千丝万缕的联系。从载人航天器的发展来看,生命保障系统的设计正力求模拟地球上的环境,因此未来的载人航天器,比如永久性空间站,就成为太空中另一个“地球”。