新浪博客

数学 :欧几里德证法

2008-10-02 10:34阅读:
众所周知,在欧几里得之前,毕达哥拉斯定理即已闻名遐迩,因此,欧几里得决不是这一数学里程碑的发现人。然而,我们下面看到的证明为他赢得了声誉,许多人都相信,这一证明最初是由欧几里得作出的。这个证明的美妙之处在于其先决条件的精练;毕竟,欧几里得为作出证明,只能依赖他的公设、公理和最初的46个命题,可谓捉襟见肘。我们不妨考虑一下他尚未涉及的几何论题:他以前唯一探讨过的四边形是平行四边形;对于圆,基本上尚未探索;而对于特别重要的相似性,则直到第六篇才开始阐述。虽然可以确信,如果应用相似三角形,可以对毕达哥拉斯定理作出非常简短的证明,但是,欧几里得不愿把这一重要命题的证明推迟到第六篇以后进行。显然,他希望尽可能早地直接涉及毕达哥拉斯定理,因此,他创立了一个证明,并以此作为《原本》的第47个命题。从这个命题中,我们可以看到,在此之前的许多命题都指向了伟大的毕达哥拉斯定理,因此,我们可以说第47命题堪称第一篇的高潮。
在我们详细介绍欧几里得的证明之前,我们不妨先来看一看用欧几里得语言阐述的这个命题,从中可以窥见其论证方法之巧妙。
命题I.47 在直角三角形中,斜边上的正方形面积等于两个直角边上的正方形面积之和。
请注意,欧几里得的命题不是关于代数方程式a2=b2
c2,而是述及了一种几何现象,涉及到以直角三角形的三条边为边所作的实在的正方形。欧几里得必须证明,以AB和AC为边的两个小正方形面积之和等于以斜边BC为边的大正方形面积(见图2.14)。为证明这一点,他采用了一个非常奇妙的方法,从直角顶点开始作线段AL,使之与大正方形的边平行,并将大正方形分割为两个矩形。现在,欧几里得只要证明左边矩形(即以B和L为对角的矩形)的面积等于以AB为边的正方形面积;同样,右边矩形的面积等于以AC为边的正方形面积即可。由此可直接导出,两个矩形面积之和等于大正方形面积,同样也就等于两个小正方形面积之和。
这一普通方法非常巧妙,但还需要补充一些细节。幸好,欧几里得在他的早期命题中已完成了全部准备工作,因此,现在的问题是如何将它们谨慎地组合起来。
证明 根据假设,欧几里得已知∠BAC是直角。他应用命题I.46,在三条边上作正方形,并应用命题I.31,过A点作AL平行于BD,然后,连接AD与FC。初看起来,这些辅助线似乎显得很神秘,但它们很快就会变得浅显易懂了。
对于欧几里得来说,关键的问题是要证明CA与AG在同一条直线上。欧几里得指明,根据正方形作图,∠GAB为直角,而根据假设,∠BAC也是直角。由于这两个角的和等于两个直角,命题I.14保证了GAC是一条直线。有趣的是,在这一显然只涉及到很少的技术性问题的证明中,欧几里得唯一一次应用了∠BAC是直角这一事实。
现在,欧几里得开始将目光转向两个细长的三角形ABD和FBC。这两个三角形的短边(分别为AB和FB)相等,因为它们是一个正方形的两条边;同理,两个三角形的长边(BD和BC)也相等。那么,它们的对应夹角是否相等呢?由于∠ABD是∠ABC与正方形直角∠CBD之和,而∠FBC是∠ABC与正方形直角∠FBA之和。公设4规定,所有直角都相等。公理2则保证了等量之和相等。因此,∠ABD=∠FBC。根据“边角边”定理(即命题I.4),欧几里得证明狭长三角形ABD与FBC全等;因此,这两个三角形的面积相等。
到目前为止,一切顺利。接着,欧几里得指明,△ABD与矩形BDLM具有同一条边BD,并且,位于同两条平行线(BD与AL)之间。因此,根据命题I.41,BDLM的面积等于△ABD面积的2倍。同样,△FBC与正方形ABFG也具有同一条边BF。并且,欧几里得已证明GAC是一条直线,因此,△FBC与正方形ABFG也同位于平行线BF与GC之间;根据命题I.41,正方形ABFG的面积也等于△FBC面积的2倍。
欧几里得综合这些结果和先前证明的三角形全等,得出:
面积(矩形BDLM)=2面积(△ABD)
=2面积(△FBC)
=面积(正方形ABFG)
至此,欧几里得完成了一半使命。下一步,他需证明矩形CELM的面积等于正方形ACKH的面积。对此,他可以用同样的方法证明。首先,连接AE与BK,然后,证明BAH是一条直线,并根据“边角边”定理,证明△ACE与△BCK全等。最后,引用命题
I.41,欧几里得推论:
面积(矩形CELM)=2面积(△ACE)
=2面积(△BCK)
=面积(正方形ACKH)
至此,毕达哥拉斯定理呼之欲出,因为:
面积(正方形BCED)
=面积(矩形BDLM)+面积(矩形CELM)
=面积(正方形ABFG)+面积(正方形ACKH)。证讫。
数学 <wbr>:欧几里德证法 数学 <wbr>:欧几里德证法 数学 <wbr>:欧几里德证法 数学 <wbr>:欧几里德证法 数学 <wbr>:欧几里德证法
至此,欧几里得完成了数学中最重要的证明之一,而他所应用的图形(图2.14)也因此成为了非常著名的图形。人们常常称欧几里得的图形为“风车”,因为它的外形看起来很像风车。从附图中我们可以看到1566年版《原本》所刊载的“风车”图形,图中的文字为拉丁文。显然,400多年前的学生便已开始研究这一图形,犹如我们刚才所做的那样。
当然,欧几里得的证明并不是证明毕达哥拉斯定理的唯一方法。实际上,证明方法有数百种之多,有的非常巧妙,有的极其平庸。(其中包括俄亥俄州众议员詹姆斯·加菲尔德的证明,他后来成为美国总统。)读者如果对其他证明方法感兴趣,可以参考E.S.卢米斯所著《毕达哥拉斯命题》一书,其中收录了对这一著名定理的千百种证明方法,令人眼花缭乱。
虽然命题I.47标志了第一篇的高潮,但欧几里得还有最后一个命题要证明,这就是毕达哥拉斯定理的逆定理。欧几里得对这一逆定理的证明,其巧妙和精练,依然是显而易见的。但遗憾的是,这一证明本该同样著名,却始终湮没不彰。实际上,大多数学生在其一生中,总会在某一时刻见到过对毕达哥拉斯定理的证明,但是见过对其逆定理证明的人就少得多,即使见到,也不敢肯定其正确性。
欧几里得对这一逆定理的证明有两个特点值得我们特别注意。其一是它非常短,将其与我们刚看到的论证相比,则尤其如此。其二是欧几里得在证明这一逆定理时,应用了毕达哥拉斯定理。这种逻辑方法虽然并非没有前例,但至少值得注意。让我们回想一下,欧几里得在证明有关平行线的两个重要命题(命题Ⅰ.27及其逆命题Ⅰ.29)时,并没有用其中一个命题去证明另一个命题。但是,他对毕达哥拉斯逆定理的证明,却将命题Ⅰ.48牢固地建立在命题Ⅰ.47的基础之上,使这两个命题成为一个明确的序列单位。
命题Ⅰ.48 在一个三角形中,如果一边上的正方形面积等于其他两边上的正方形面积之和,则这两边的夹角是直角。
数学 <wbr>:欧几里德证法
所示。他必须证明∠BAC是直角。
为此,欧几里得首先根据命题Ⅰ.11,作AE垂直于AC,并交AC于A。
数学 <wbr>:欧几里德证法
明三角形BAC与DAC全等。
数学 <wbr>:欧几里德证法
确定的),但根据垂线作图,我们知道∠DAC是直角。因此,欧几里得完全有理由应用毕达哥拉斯定理于直角三角形DAC,并根据假设,推导出
数学 <wbr>:欧几里德证法
数学 <wbr>:欧几里德证法
边边”定理,△DAC与△BAC全等。因而,∠BAC与∠DAC也必然全等。而根据作图,后者为直角,所以,∠BAC也是直角。证讫。
命题Ⅰ.47和Ⅰ.48相得益彰,揭示了直角三角形的全部特征。欧几里得表明,一个三角形,如果也只有当其斜边的平方等于两条侧边的平方和时,这个三角形才是直角三角形。这些证明过去是,现在依然是最佳几何例证。
这两个毕达哥拉斯命题在另一种意义上也是卓越非凡的。欧几里得以一种巧妙的方式证明这两个命题是一回事,而这两个命题是正确的则是另一回事。对于直角三角形与平方和的密切关系,没有直觉的推论。例如,它不像命题Ⅰ.20那样,是一种甚至连驴子都能懂得的不证自明的真理。相反,毕达哥拉斯定理证明了一个非常奇特的事实,其奇特性之所以不被认识,仅仅是因为其结果太著名了。理查德·特鲁多在他的《非欧几里得革命》一书中精彩地描述了毕达哥拉斯定理这种固有的奇特。特鲁多注意到,直角是一种人人都熟悉的日常存在,它不仅存在于人为世界,而且也存在于自然界本身。还有什么能比直角更“普通”或更“自然”的呢?但特鲁多又说:
毕达哥拉斯定理使我感到非常惊奇……‘a2=b2c2’……无论如何引不起我本能的记忆……因为这个方程抽象,精确,异乎寻常。我想象不出这样一种东西与日常生活中所见的直角有什么关系。因此,当偶然揭开熟悉的帘幕,重新审视毕达哥拉斯定理,我不禁感到目瞪口呆。
数学 <wbr>:欧几里德证法
结合变形,转动与移动分别证明
A1 = A2 且 A3=A4

课件下载:emcdown.ys168.com

详细介绍:http://www.fshyxx.com/kezu/shuxue/gougu/zhengming/jingdian/01.html

我的更多文章

下载客户端阅读体验更佳

APP专享