众所周知,在欧几里得之前,毕达哥拉斯定理即已闻名遐迩,因此,欧几里得决不是这一数学里程碑的发现人。然而,我们下面看到的证明为他赢得了声誉,许多人都相信,这一证明最初是由欧几里得作出的。这个证明的美妙之处在于其先决条件的精练;毕竟,欧几里得为作出证明,只能依赖他的公设、公理和最初的46个命题,可谓捉襟见肘。我们不妨考虑一下他尚未涉及的几何论题:他以前唯一探讨过的四边形是平行四边形;对于圆,基本上尚未探索;而对于特别重要的相似性,则直到第六篇才开始阐述。虽然可以确信,如果应用相似三角形,可以对毕达哥拉斯定理作出非常简短的证明,但是,欧几里得不愿把这一重要命题的证明推迟到第六篇以后进行。显然,他希望尽可能早地直接涉及毕达哥拉斯定理,因此,他创立了一个证明,并以此作为《原本》的第47个命题。从这个命题中,我们可以看到,在此之前的许多命题都指向了伟大的毕达哥拉斯定理,因此,我们可以说第47命题堪称第一篇的高潮。
在我们详细介绍欧几里得的证明之前,我们不妨先来看一看用欧几里得语言阐述的这个命题,从中可以窥见其论证方法之巧妙。
命题I.47
在直角三角形中,斜边上的正方形面积等于两个直角边上的正方形面积之和。
请注意,欧几里得的命题不是关于代数方程式a2=b2
在我们详细介绍欧几里得的证明之前,我们不妨先来看一看用欧几里得语言阐述的这个命题,从中可以窥见其论证方法之巧妙。
命题I.47
请注意,欧几里得的命题不是关于代数方程式a2=b2



