一、概念(分析-一般线性模型-多变量)
“GLM
多变量”过程通过一个或多个因子变量或协变量为多个因变量提供回归分析和方差分析。因子变量将总体划分成组。通过使用此一般线性模型过程,您可以检验关于因子变量对因变量联合分布的各个分组的均值的效应的原假设。可以调查因子之间的交互以及单个因子的效应。另外,还可以包含协变量的效应以及协变量与因子的交互。对于回归分析,自变量(预测变量)指定为协变量。
平衡与非平衡模型均可进行检验。如果模型中的每个单元包含相同的个案数,则设计是平衡的。在多变量模型中,模型中的效应引起的平方和以及误差平方和以矩阵形式表示,而不是以单变量分析中的标量形式表示。这些矩阵称为SSCP(平方和与叉积)矩阵。如果指定了多个因变量,则提供使用Pillai 的轨迹、Wilks 的lambda、Hotelling的轨迹、Roy 的最大根条件以及近似F 统计量的多变量方差分析,同时还提供每个因变量的单变量方差分析。除了检验假设,“GLM 多变量”过程还生成参数估计。
常用的先验对比可用于执行假设检验。另外,在整体的F 检验已显示显著性之后,可以使用两两比较检验评估指定均值之间的差值。估计边际均值为模型中的单元提供了预测均值估计值,且这些均值的轮廓图(交互图)允许您轻松对其中一些关系进行可视化。单独为每个因变量执行两两多重比较检验。
残差、预测值、Cook 距离以及杠杆值可以另存为数据文件中检查假设的新变量。另外还提供残差SSCP 矩阵(残差的平方和与叉积的方形矩阵)、残差协方差矩阵(残差SSCP 矩阵除以残差的自由度)和残差
平衡与非平衡模型均可进行检验。如果模型中的每个单元包含相同的个案数,则设计是平衡的。在多变量模型中,模型中的效应引起的平方和以及误差平方和以矩阵形式表示,而不是以单变量分析中的标量形式表示。这些矩阵称为SSCP(平方和与叉积)矩阵。如果指定了多个因变量,则提供使用Pillai 的轨迹、Wilks 的lambda、Hotelling的轨迹、Roy 的最大根条件以及近似F 统计量的多变量方差分析,同时还提供每个因变量的单变量方差分析。除了检验假设,“GLM 多变量”过程还生成参数估计。
常用的先验对比可用于执行假设检验。另外,在整体的F 检验已显示显著性之后,可以使用两两比较检验评估指定均值之间的差值。估计边际均值为模型中的单元提供了预测均值估计值,且这些均值的轮廓图(交互图)允许您轻松对其中一些关系进行可视化。单独为每个因变量执行两两多重比较检验。
残差、预测值、Cook 距离以及杠杆值可以另存为数据文件中检查假设的新变量。另外还提供残差SSCP 矩阵(残差的平方和与叉积的方形矩阵)、残差协方差矩阵(残差SSCP 矩阵除以残差的自由度)和残差
