新浪博客

如何在spss中进行正态分布检验(一)

2009-03-27 21:21阅读:
如何在spss中进行正态分布检验(一)
一、图示法
1P-P
以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。
2Q-Q
以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。
以上两种方法以Q-Q图为佳,效率较高。
3、直方图
判断方法:是否以钟形分布,同时可以选择输出正态性曲线。
4、箱式图
判断方法:观测离群值和中位数。
5、茎叶图
类似与直方图,但实质不同。
二、计算法
1、偏度系数(Skewness)和峰度系数(Kurtosis
计算公式:


g1表示偏度,g2表示峰度,通过计算g1g2及其标准误σg1σg2然后作U检验。两种检验同时得出U<U0.05=1.96,即p>0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。
2、非参数检验方法
非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk W 检验)。
SAS中规定:当样本含量n 2000结果以Shapiro – WilkW 检验为准当样本含量n >2000 结果以Kolmogorov – SmirnovD 检验为准。
SPSS中则这样规定:(1如果指定的是非整数权重,则在加权样本大小位于350之间时,计算 Shapiro-Wilk 统计量。对于无权重或整数权重,在加权样本大小位于3 5000 之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro – Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。(2)单样本 Kolmogorov-Smirnov 检验可用于检验变量(例如income)是否为正态分布。
对于此两种检验,如果P值大于0.05,表明资料服从正态分布。

我的更多文章

下载客户端阅读体验更佳

APP专享