
![]() 第一:频谱 一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) → Xk = 39.0000 Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 二.FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。 clf; fs=100;N=128; n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); mag=abs(y); f=n*fs/N; subplot(2,2,1),plot(f,mag); xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; %对信号采样数据为1024点的处理 fs=100;N=1024;n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); mag=abs(y); f=n*fs/N; subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; subplot(2,2,4) plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; 运行结果: 登录/注册后可看大图 例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制: (1)数据个数N=32,FFT所用的采样点数NFFT=32; (2)N=32,NFFT=128; (3)N=136,NFFT=128; (4)N=136,NFFT=512。 clf;fs=100; %采样频率 Ndata=32; %数据长度 N=32; �T的数据长度 n=0:Ndata-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); y=fft(x,N); mag=abs(y); f=(0:N-1)*fs/N; %真实频率 subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅 xlabel('频率/Hz');ylabel('振幅'); title('Ndata=32 Nfft=32');grid on; Ndata=32; N=128; n=0:Ndata-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); y=fft(x,N); mag=abs(y); f=(0:N-1)*fs/N; %真实频率 subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅 xlabel('频率/Hz');ylabel('振幅'); title('Ndata=32 Nfft=128');grid on; Ndata=136; N=128; n=0:Ndata-1;t=n/fs; %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); y=fft(x,N); mag=abs(y); |