上节我们全面讨论了凯利方差的最基本应用,是以方差值最集中的那一个或两个项目,判断出博彩公司意见最统一的项目,从而作出希望“跟庄走”的操作。不过相信有一定经验的玩家会发出这样的疑问:凯利方差通常会计算出最集中的赔率方向,但是在低赔率让深盘的情况下,凯利方差通常会较集中在上盘强队的方向,而下盘弱队方向则通常会呈现较大的方差值,表现得相当离散。不过这样就很明显地忽略了下盘冷门机会和能力,这也是市面上对凯利值的重要诟病之一:发现冷门的能力较弱。
必发指数网同屏比较十大最主流公司并实时计算出凯利方差指数的功能,将会极大程度上解决这一瓶颈。我们先看看以下这组数据:
这是2007年8月7日欧冠第二圈的一场比赛,索非亚利夫斯基主场对阵谭伯利。凯利方差值显示主胜0.03最为集中,换言之主流庄家对于这样一个深盘和低赔的观点十分统一。而最离散的值在于客胜,达到0.35。再此特别提醒玩家:“集中”是指观点集中,是“庄家群体”观点趋同,但“庄家群体”不是必胜的,同样有输的时候;“离散”是指观点分散,但不是指必败。今天我们就来仔细分析一下“离散”的重要暗示。
‘离散’是指考察的目标数据中,距离其中位数字或平均数字呈现大小不一的绝对值。如果该绝对值的差距趋向零,则离散程度低;反之则离散程度高。在离散程度高的情况下,又可分为以下三种情况:(1)正向离散,是指考察群体数据中,大部分的数据具有相同或相近的离散绝对值,而小量的数据则高于中位数字或平均数字且具有较大的离散绝对值。比如以下一组数字: 1,2,0,-1,-2,10,其中1,2,0,-1,-2具有相近的离散绝对值,而10则高于中位数字且具有较大的离散绝对值;(2)反向离散,是指考察群体数据中,大部分的数据具有相同或相近的离散绝对值,而小量的数据则低于中位数字或平均数字且具有较大的离散绝对值。比如以下一组数字: 1,2,0,-1,-2,-10,其中1,2,0,-1,-2具有相近的离散绝对值,而-10则低于中位数字且具有较大的离散绝对值;(3)凌乱离散,是指一组数字中没有明显的群体分组,各个目标数据均有相当不同的离散绝对值。比如以下这组数字:1,101,-20,55,-88。
我们定义了以上的’离散’情况,回头再来考察上图中凯利方差指数和同屏对比的十大公司赔率,我们可以发现,客胜的这组数据中的离散程度,主要是有
必发指数网同屏比较十大最主流公司并实时计算出凯利方差指数的功能,将会极大程度上解决这一瓶颈。我们先看看以下这组数据:
这是2007年8月7日欧冠第二圈的一场比赛,索非亚利夫斯基主场对阵谭伯利。凯利方差值显示主胜0.03最为集中,换言之主流庄家对于这样一个深盘和低赔的观点十分统一。而最离散的值在于客胜,达到0.35。再此特别提醒玩家:“集中”是指观点集中,是“庄家群体”观点趋同,但“庄家群体”不是必胜的,同样有输的时候;“离散”是指观点分散,但不是指必败。今天我们就来仔细分析一下“离散”的重要暗示。
‘离散’是指考察的目标数据中,距离其中位数字或平均数字呈现大小不一的绝对值。如果该绝对值的差距趋向零,则离散程度低;反之则离散程度高。在离散程度高的情况下,又可分为以下三种情况:(1)正向离散,是指考察群体数据中,大部分的数据具有相同或相近的离散绝对值,而小量的数据则高于中位数字或平均数字且具有较大的离散绝对值。比如以下一组数字: 1,2,0,-1,-2,10,其中1,2,0,-1,-2具有相近的离散绝对值,而10则高于中位数字且具有较大的离散绝对值;(2)反向离散,是指考察群体数据中,大部分的数据具有相同或相近的离散绝对值,而小量的数据则低于中位数字或平均数字且具有较大的离散绝对值。比如以下一组数字: 1,2,0,-1,-2,-10,其中1,2,0,-1,-2具有相近的离散绝对值,而-10则低于中位数字且具有较大的离散绝对值;(3)凌乱离散,是指一组数字中没有明显的群体分组,各个目标数据均有相当不同的离散绝对值。比如以下这组数字:1,101,-20,55,-88。
我们定义了以上的’离散’情况,回头再来考察上图中凯利方差指数和同屏对比的十大公司赔率,我们可以发现,客胜的这组数据中的离散程度,主要是有
