新浪博客

概率分布的参数估计(Matlab)

2011-11-03 10:11阅读:
命令 β分布的参数a和b的最大似然估计值和置信区间
函数 betafit
格式 PHAT=betafit(X)
[PHAT,PCI]=betafit(X,ALPHA)
说明 PHAT为样本X的β分布的参数a和b的估计量
PCI为样本X的β分布参数a和b的置信区间,是一个2×2矩阵,其第1例为参数a的置信下界和上界,第2例为b的置信下界和上界,ALPHA为显著水平,(1-α)×100%为置信度。

命令 正态分布的参数估计
函数 normfit
格式 [muhat,sigmahat,muci,sigmaci] = normfit(X)
[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)
说明 muhat,sigmahat分别为正态分布的参数μ和σ的估计值,muci,sigmaci分别为置信区间,其置信度为(1-alpha)*100%;alpha给出显著水平α,缺省时默认为0.05,即置信度为95%。


命令 利用mle函数进行参数估计
函数 mle
格式 phat=mle('dist',X) %返回用dist指定分布的最大似然估计值
[phat, pci]=mle('dist',X) %置信度为95%
[phat, pci]=mle('dist',X,alpha) %置信度由alpha确定
[phat, pci]=mle('dist',X,alph,pl) %仅用于二项分布,pl为试验次数。
说明 dist为分布函数名,如:beta( clip_image009
分布)、bino(二项分布)等,X为数据样本,alpha为显著水平α,(1-alpha)*100%为置信度。

其他
函数名
调 用 形 式
函 数 说 明
binofit
PHAT= binofit(X, N)
[PHAT, PCI] = binofit(X,N)
[PHAT, PCI]= binofit (X, N, ALPHA)
二项分布的概率的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的参数估计和置信区间
poissfit
Lambdahat=poissfit(X)
[Lambdahat, Lambdaci] = poissfit(X)
[Lambdahat, Lambdaci]= poissfit (X, ALPHA)
泊松分布的参数的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的λ参数和置信区间
normfit
[muhat,sigmahat,muci,sigmaci] = normfit(X)
[muhat,sigmahat,muci,sigmaci] = normfit(X, ALPHA)
正态分布的最大似然估计,置信度为95%
返回水平α的期望、方差值和置信区间
betafit
PHAT =betafit (X)
[PHAT, PCI]= betafit (X, ALPHA)
返回β分布参数a和 b的最大似然估计
返回最大似然估计值和水平α的置信区间
unifit
[ahat,bhat] = unifit(X)
[ahat,bhat,ACI,BCI] = unifit(X)
[ahat,bhat,ACI,BCI]=unifit(X, ALPHA)
均匀分布参数的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的参数估计和置信区间
expfit
muhat =expfit(X)
[muhat,muci] = expfit(X)
[muhat,muci] = expfit(X,alpha)
指数分布参数的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的参数估计和置信区间
gamfit
phat =gamfit(X)
[phat,pci] = gamfit(X)
[phat,pci] = gamfit(X,alpha)
γ分布参数的最大似然估计
置信度为95%的参数估计和置信区间
返回最大似然估计值和水平α的置信区间
weibfit
phat = weibfit(X)
[phat,pci] = weibfit(X)
[phat,pci] = weibfit(X,alpha)
韦伯分布参数的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的参数估计及其区间估计
Mle
phat = mle('dist',data)
[phat,pci] = mle('dist',data)
[phat,pci] = mle('dist',data,alpha)
[phat,pci] = mle('dist',data,alpha,p1)
分布函数名为dist的最大似然估计
置信度为95%的参数估计和置信区间
返回水平α的最大似然估计值和置信区间
仅用于二项分布,pl为试验总次数

我的更多文章

下载客户端阅读体验更佳

APP专享