【转载】Chow检验
2010-09-29 10:29阅读:
邹检验(Chow test)是一种
计量经济检验。它可以测试两个不同数据的
线性回归的系数是否相等。在
时间序列分析中,邹检验被普遍地用来测试结构性变化是不是存在。邹检验是由经济学家
邹至庄创立的。
假设我们的数据模型是:
如果我们把数据分为两组,那么:
及
邹检验就是断定是否a
1 = a
2,b
1 =
b
2 和 c
1 = c
2。
假设S
C是组合数据的
残差平方和,S
1是第一组数据的残差平方和,S
2是第二组数据的残差平方和。N
1和N
2分别是每一组数据的观察数目,k是参数的总数。邹检验的检验值是:
邹检验的检验值呈
F-分布,它的
自由度
为k和N
1 + N
2 − 2k。
The Chow test is a
statistical and
econometric test of
whether the coefficients in two
linear
regressions on different data sets are equal. The Chow test was
invented by economist
Gregory Chow. In econometrics, the Chow test is most commonly
used in
time series
analysis to test for the presence of a
structural
break. In
program
evaluation, the Chow test is often used to determine whether
the independent variables have different impacts on different
subgroups of the population.
Suppose that we model our data as .
If we split our data into two groups, then we have .
And .
The
null hypothesis
of the Chow test asserts that a
1 = a
2,
b
1 = b
2, and c
1 =
c
2.
Let S
C be the sum of squared
residuals
from the combined data, S
1 be the sum of squared
residuals
from the first group, and S
2 be the sum of squared
residuals
from the second group. N
1 and N
2 are the
number of observations in each group and k is the total number of
parameters (in this case, 3). Then the Chow test statistic is