原文地址:刘徽“青朱出入图”另解
中国成书于公元前1世纪的《周髀算经》第一次记载了勾股定理的应用:“昔者周公(注:公元前11世纪周武王的大臣)问于商高(注:学者)曰:‘窃闻科大夫善数也,请问古者包牺立周历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?’商高曰:‘数之法,出于方圆。圆出于方,方出于矩,矩出于九九八十一。故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。’”
基于上述渊源,中国学者一般把此定理叫做“勾股定理”或“商高定理”。
赵爽约在222年深入研究了《周髀算经》,为该书写了序言,并作了详细注释。其中一段530余字的“勾股圆方图”注文是数学史上对勾股定理的第一次证明。
图1
他将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”
证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。”
翻译出来就是:如图1,用勾(a)和股(b)相乘(a×b)等于两块红色三角形的面积,乘以二(2ab)即为四块红色三角形的面积
