新浪博客

格式塔心理学原理:环境场——视觉组织及其定律

2013-12-02 15:58阅读:
格式塔心理学原理:环境场——视觉组织及其定律
第四章环境场——视觉组织及其定律

行为世界的组织和特性。
静止过程的一般特征。
简洁律。
最简单的条件:完全同质的刺激分布。
空间组织的某些基本原理。
异质刺激:在其他同质场中唯一异质的简单例子——涉及这一例子的两个问题:(1)单位形成;(2)形状问题。
作为刺激的点和线:(1)点;(2)线——闭合因素;良好形状的因素;良好的连续;线条图样的三维组织;
空间知觉理论的结果:先天论和经验主义;三维空间的组织理论。
刺激、线和点的非连续异质:接近性;接近性和等同性;闭合。
其他一些异质刺激。
组织和简洁律:最小和最大的单一性。
来自数量、顺序和意义等观点的组织。

行为世界的组织和特性

事物的外表由场的组织(field organization)所决定,接近刺激(proximal stimulus)的分布引起了这种场的组织。于是,我们必须把我们的研究用于这种场的组织中去。那么,何种组织对单位形成(unit formation)负责呢?为什么行为空间(behaviouralspace)是三维的呢?组织是如何产生颜色或大小恒常性的呢?这些都是我们必须处理的问题。历史上,这些问题均以随机的顺序得到过研究,每一位实验者选择一个场,在这个场里他碰巧看到一个实际的问题以及解决该问题的一种方法。毋须赘言,我们对许多这样的问题尚无答案,而且,对任何一个问题均无完整的答案。但是,我们现在拥有充分的实验证据,以便为我们的评说提供系统化的程序。我们将以这样一种方式选择我们的材料,它可以使相互依存的主要问题清楚地显示出来。

静止过程的一般特征

倘若我们的起点更为一般化,则这样一种系统的尝试就会取得更好的成功。因此,在谈论任何一种实验证据以前,我们将问一个问题,即我们是否知道属于一切组织的任
何一种组织特性。由于心理的组织是我们的问题,因此我们无法从心理事实中取得我们的答案,可以这样说,心理组织是我们方程式中的未知数。这就意味着,我们必须转向物理学。那么,物理组织,即过程的自发分布,是否显示了我们正在寻找的一般特征呢?

最大和最小的特性

当我们转向静止分布(stationary distributions)时,也就是说,时间上的不再变化,我们确实找到了这些特征。静止过程具有某些最大一最小特性(maximum-minimun properties),也就是说,这些过程的一个已知参数(parameter)不仅具有大小,而且具有最大或最小的可能性。我们只需举出几个例子便可使这一点明晰起来:如果我们在同一节电池的两极之间建立起若干电路,那末电流便将自行分布,以便在该系统中产生最小的能量。让我们来举一个只有两部分电路的简单例子。基尔霍夫定律(kirchhoff’ s law)表明了 I1/I2= R2/R1,在这一方程式中,I1和I2代表两部分电流的强度(intensities),而R1和R2则代表部分电路中相应的电阻。现在,从数学角度很容易说明,这些电流(即在电阻为R1的电路内电流I1和电阻为R2的电路内电流I2)将产生较少的热量,也就是说,比起电流I1为更大或更小的情况来,比起电流I2为更大或更小的情况来,将产生较少的热量,这是相对于基尔霍夫定律的要求而言的[两种强度之和必须保持不变,因为电路的电流强度仅仅依赖它的电动势(electromotive force)及其全部电阻]。

另外一个例子是肥皂泡。为什么肥皂泡的形状呈球形呢?在所有固体中,球体的表面积对于特定的体积来说是最小的,或者说,球体的体积对于特定的表面积来说是最大的。因此,肥皂泡解决了一个最大一最小的问题,我们也不难理解个中的原因了。肥皂粒子相互吸引,它们倾向于占据尽可能少的空间,但是,内部的空气压力迫使这些肥皂粒子停留在外面,从而形成这一空气容积的表面膜。它们必须尽可能地形成厚的表面层,如果表面越小,它的厚度就越大,这是以质量的量(amount of mass)保持不变为前提的。与此同时,膜的势能将尽可能小。

最大量和最小量当然是与占优势的条件相关联的;绝对的最大量是无限的,而最小量则等于零。在我们的上述例子中,所谓条件就是指质量的量,也就是说,肥皂溶液的量和空气容积。在第一个例子中,它是指由电动势和全部电阻产生的整个电路的电流强度。

现在,我们可以理解有关静态分布的一般观点了,它是我从苛勒(kohler)那里援引过来的:“处于不受时间支配的状态(time-independent states)的一切过程,分布向着最小能量转移”(192年,p.250)。或者,可以这样说,最终的不受时间支配的分布包含能够工作的最小能量。这个观点适用于我们将在后面讨论的整个系统,即在某些条件下,它要求整个系统的一部分吸收最大的能量(参见苛勒,1924年,p.533)。
于是,我们在物理学中发现了一种静止分布的特征,也即我们已经寻找过的那种特征。如果神经过程是物理过程的话,那末它们必须满足这个条件,不论它们是静止的还是半静止的;我们无法期望在我们的神经系统中找到这样的过程,它们完全不受时间的支配,因为这些条件从不保持绝对的恒定。然而,在短时期内,这些条件的变化在大量的例子中将发生得十分缓慢,以致于为了实用的目的,这些分布在这样的短时期内是静止的;于是,这些过程可以称作准静止的(quasi-stationary),它们可以作为静止过程来处理。这样,我们找到了一切静止的神经组织的一般特征:我们知道,它们必须具有某些特性,仅仅因为它们是静止组织的缘故。就其本身而言,这是一种巨大的收获,但是它并未为我们提供任何一种具体的顿悟(insight),即对心理组织实际性质的顿悟,因为我们没有测量这些过程之能量的工具。我们可以这样说,若以牺牲物理观点的精确性为代价,则在心理组织中,如同占优势的条件所允许的那样,将会发生非多即少的情况。

质的方面

我们可以再深入一步。迄今为止,我们的陈述是关于量化方面的,可是,我们的行为环境(behavioural environment)并不反映这种量化;恰恰相反,它是纯质的。那末,我们如何才能在量和质之间架设桥梁呢?关于这个问题,我们已经在第一章中回答过了:量和质并非事件的两个不同特性,而是同一件事件的不同方面。因此,我们可以问:满足量的最小-最大条件的静止的物理过程的质化方面究竟是什么?对于这个问题,不可能取得完全满意的答案,我们没有可以用于一切情形的一般的质化概念。但是,存在一些特例,在这些特例中,静止过程的质化方面开始变得明显起来(苛勒,1920年,pp.257f)。像居里(Curie)和马赫(Mach)等物理学家都曾被自然界中许多稳定形式的对称性(Symmetry)和规律性(regularity)所围困,诸如结晶体就属于此类。于是,居里系统地阐述了下述的主张,“某些对称要素并不存在,这对于任何一种物理过程的发生来说是必要的”;苛勒则系统阐述了这一主张的反题:听任自身处置的一种系统将会在趋向一种不受时间支配的状态中失去其不对称性,并变得更具规律性。

只要过程得以发生的条件是简单的,则这一主张的措词便是十分清楚的了。但是,当过程得以发生的条件变得不怎么简单时,将会发生什么情况呢?一个非常具有启发性的例子是水滴。当水滴悬于具有同样密度的媒体(medium)中时,它们将是完美的球体;借助固体的支持,球状稍微扁平;当水滴穿过空气时,它们又表现出一种新的形状,尽管这种形状比球状更不简单,却仍然是完全对称的,并满足以下的条件,即水滴的形状使它穿越空气时受到的阻力最小,这样一来,它便可以下落得尽可能地快;换言之,下降的水滴完全是流线型的(streamlined);它的对称性再次与最大-最小原理相一致。我们在这个例子中看到了一种静止状态如何随着越来越复杂的条件而变得越来越不简单,平衡(equilibrium)状态便是在这些条件下建立起来的。所以,当媒体处于复杂状态时,当媒体以一种复杂的方式使其特性逐点发生变化时,随之而产生的静止分布在某种意义上说便不再是有规律的或对称的,我们就不再拥有概念去描述这类分布的质化方面。概念将不得不是这样的,即普通的对称性将成为特例,只在特别简单的条件下实现。

尽管我们收获不大,但是我们已经获得了一些东西。我们至少能够选择在简单条件下发生的心理组织,并预言它们具有规律性、对称性和单一性(simplicity)。这一结论是以“心物同型论”(isomorphism)的原理为基础的,根据这一原理,生理过程的特征也就是与之相应的意识过程的特征。

此外,我们必须记住,始终存在着两种可能性,它们与最小量和最大量相一致;从而发生非多即少的情况。因此,根据这两种可能性,我们的术语——单一性或规律性将具有不同含义。最小事件的单一性将与最大事件的单一性有所区别。至于这两种可能性中哪一种可能性会在每一种具体情形里实现,则依赖于该过程的一般条件。

简洁律

我们已经得到了一个一般的原理,尽管公认为是有点含糊的原理,但它指导着我们对心物组织(psychophysical organization)进行研究。在我们的研究过程中,我们将使这一原理变得更加具体;我们将习得关于单一性和规律性本身的更多的东西。该原理是由威特海默(Wertheimer)引入的,他称这一原理为简洁律(law of Pragnanz)。它可以简要地阐述如下:心理组织将总是如占优势的条件所允许的那样“良好”(good)。在这一定义中,“良好”这个术语未被界定。它包括下列特性,例如规律性、对称性、单一性,以及我们在讨论过程中将会遇到的其他一些特性。

最简单的条件:完全同质的刺激分布

现在,让我们从研究具体的心理组织开始!我们从一个最简单的例子开始我们的阐释,这个例子仅仅在最近才引起心理学家的注意。只有当力的分布在感官表面上绝对同质(homoge-neous)时,这个最简单的例子才得以实现。

为什么这是一个最简单的条件:不同的传统观点

为什么事物像看上去的那样?这个问题我们在前一章已经讨论过了。为了把这一例子看作是最简单的例子(尽管它看来是理所当然的),我们需要在回答问题时作出剧烈的改变。只要人们期望对我们问题的答案来自局部刺激(local stimulation)结果的调查,那么,另一情形看来便是最简单的了,也就是说,在该情形中,视网膜只有一点受到刺激。实验证据(该证据我们将在后面进行讨论)表明这种假设是错误的。同样的结论直接来自我们的第三个答案。如果知觉便是组织的话,也就是说,一个拓展中的心物过程有赖于整个刺激分布,那么,这种分布的同质性必定是最简单的情形,而不是包含不连续性(discontinuity)的传统情形。我们可以用数学方式来表述这两种刺激,也就是测定视网膜上位置功能的刺激强度。由于视网膜是一个表面,视网膜上的每个点可以按照笛卡尔坐标系(Decartesian system of co-ordinates)而在一个平面上描绘。每个点的强度必须被描绘为这一平面上的一个点,所有强度将存在于一个表面上,它的形状有赖于强度的分布。现在,如果 强度是同质的,那么这个表面就将是与xy平面相平行的一个平面,平面上方位置越高,强度也就越大,而且,在距离为零时,与之相应,强度也等于零。相反,如果我们的视网膜只有一点受到刺激,那么我们的表面就不再是一个作为整体的平面了。它的最大部分仍将与xy平面保持一致,但是,在一个点上,对受到刺激的这个点来说,其强度将呈陡峭的上升走势,在下一点上又重新。下降至xy平面。如果我们不想运用透视图的话,我们便只能复制一个有关这些分布的二维截面图。然后,我们可以在横坐标上沿着视网膜的一条线(譬如说,视网膜水平线)测定所有的点和纵坐标上的强度。一般说来,所谓视网膜水平线是指眼睛处于正常位置时通过视觉中心的一根水平线。因此,图8a代表强度i的同质分布,图8b则描绘了只有一点受到刺激时的分布情况。在图8a里面,上方的线表示分布,而在图8b里面,则整个图解均表示分布情况,因为在X轴和i轴上除了该点之外都是一致的。第一幅图与一个完全的平面相一致,而第二幅图与一个具有极性(pole)的平面相一致。那么,当我们的视网膜按照第一幅图形受到中性光(neutral light)刺激时,我们将看见什么?

中性光的同质分布

我必须用新的条件来修改一般的问题,这里的新条件是指,光是中性的,因为用这些刺激分布所做的实验采用的便是中性光。我们将在后面就光非中性的情形提供一个假设性陈述。

产生这种同质刺激的不同的距离刺激

对我们问题的回答颇为简单:在这些条件下,观察者将会“感到他自己在雾霭般的光线中游泳,光线在不定的距离上变得更加聚集(condensed)起来”[梅茨格(Metzger),1930年,p.13」。让我们考虑一下我们是如何在视网膜的整个区域内产生这种一致的强度分配的;换言之,我们必须使用哪些距离刺激(distantstimuli)以便获得同质的接近刺激(proximal stimulation)。当然,我们可以使我们的被试置于实际的迷雾之中,并对迷雾予以均匀照明,在该情形里,被试的行为场将是地理场的良好代表;看到的雾与实际的雾相一致。即便如此,不断增加的聚集将是属于行为雾(behavioural fog)的特征,而不是属于实际雾的特征。但是,我们可以通过完全不同的手段来产生同样的接近刺激。置于观察者面前的任何一个表面,如果面上的每个点均把同样数量的光送入观察者的眼中,这将满足我们的条件。不论他是位于一个平坦的垂直墙前面,还是位于一个半球的中央,或者身处一片实际的雾中,对他来说不会有什么不同;他将始终看到充斥着空间的迷雾,而不是一个平面。此外,不管面的反照率(albedo)是什么,如果从面上反射的光保持不变,那也不会有什么不同。反照率是反射系数(coefficient of reflection),即用单位面积接受的光量去除以单位面积反射的光量;而反射的光量是投射于单位面积的光的产物和反照率。如果L代表反照率,i代表反射光的强度,I代表投射到单位面积上的光的强度,那末:

L=i/I,并且i=IL

由于没有任何一种表面能将投射于其上的所有光反射出去,因此L始终小于I。如果L与I呈反比的话,则i保持不变。

i=LI’=(LP)I/P

这里的P是指任何正数(positive number)。

这些条件下的白色恒常性

因此,在绝对同质的刺激条件下,雾的外表只能依赖i,如果i保持恒常,并且完全不受L的支配,情况必定是这样。换言之,有两个面,一个面比另一个面明亮10倍,但是接受的光照却只有后者的1/10,那么这两个面肯定产生同样的知觉。这意昧着,在这些条件下不可能存在白色恒常性,因为恒常性是指,实际的外表是反照率的一个函数;在正常条件下,一个处于充分光照下的黑色表面像阴影中的一个白色表面一样反射同样多的光,但是这个黑色表面看起来与白色表面并不一样亮,对此问题,我们将在最后一章予以讨论。

白色和坚持

如果使用全部同质的刺激,那末就不可能发生任何恒常性,这个否定陈述涉及下面的肯定主张,即一切恒常性预示了刺激的异质性,并为我们提供了解释恒常性的第一条线索。另一方面,这个否定陈述还留给我们一个问题;当两个同质的面以反照率L1和L2接收光照量I1和I2,在L1I1=L2I2时,如果这两个同质面引起了同样的知觉,那么这种知觉将成为什么样子?它们呈白色还是灰色还是黑色?只有当我们知道了外表对i(即反射光的强度)的依赖性以后,我们方才能够回答这个问题。但是,这个函数或多或少还是未知的。我们能够肯定地说的是,这个函数的因变量(dependent variable)即雾的外


表,具有几个方面,它们可以作为分离变量(Separate variables)来处理。我们必须至少在它的“白色”和它的“印象”(impressiveness)或“坚持”(insis-tency)之间作出区分。前者意指它与黑白系列成员的相似性,后者意指一种特征,它不仅仅涉及行为目标,而且涉及自我(Ego),即自我和行为目标之间的一种关系(梅茨格,p.20)。早在1896年,G.E.缪勒(Muller)把“印象”界定为“感觉印象用以吸引我们注意的力量”(pp.20f.)。如果这是指一种直接描述的话,那么,看来它与我们文章中的陈述是等同的,我们的陈述取自梅茨格,他也摘引了缪勒的话,而铁钦纳(Titchener)的三个术语更加清楚地带出了目标-自我的关系(object-Ego relation)。当我们引入自我时,我们将讨论与坚持类似的特征,但是,有意义的是,如果我们不是被迫地去提及自我的话,我们甚至无法开始关于环境场的讨论。环境场的特征是一个自我的场,这种自我直接受该场的影响。

同质刺激强度的效应

然而,我们必须回到自己的问题上来,即雾的外表和刺激强度的关系问题。由于我们的知识仍然很不完整,因此,我们可以不考虑适应性在这种关系上的效应,这里的所谓适应性,是指一般意义上的暗适应和光适应(dark and light adaptation)。我们可以根据梅茨格在绝对同质刺激条件下取得的结果而得出结论,坚持随强度而变化大于坚持随白色而变化。梅茨格提供了有关场中事件(从绝对的黑暗开始,逐渐明亮起来)的描述。“起初,对观察者来说,它是在沉闷减少的意义上亮起来的,而不是在黑暗减少的意义上亮起来的,观察者感到一种压力的消失,他似乎可以再次自由自在地呼吸了;有些人同时看到了空间的明显扩展。只有到了那时,它才会在黑暗减少的意义上迅速地亮起来,与此同时,充斥空间的色彩也降低了”(p.16)。由于他无法在较高的强度上产生完全同质的刺激分布,因此,我们无法确定被见到的迷雾空间的深度对刺激强度的依赖性,但是,我们看到了刺激的开始,也看到了刺激的第一次增强产生了明显的扩张。这种扩张再次与自我相关;只要注意一下从压力下解脱出来就行了,这种压力恰恰是刺激的首次结果。

梅茨格的仪器设备

现在,让我们简要地描述一下梅茨格的仪器设备。观察者坐在经过仔细粉刷的墙的前面,墙的面积为4×4平方米,距离为1.25米。如果观察者直接坐在墙中央的对面,那么这堵墙便不会全部进入观察者的视野,它与水平方向大约200度视角相一致,并与垂直方向的125度视角相一致,而墙的侧面仅仅填满了116度的视角。由于观察者坐在置于房间地板上的一把椅子上,凝视着地板上方约1.5米的一个点,所以,墙壁的维度在任何一个方向上都是不充分的;因此,朝向观察者的两侧必须加到所有的四条边上去,从而使引入的异质尽可能地小。实际上,墙壁和两侧结合在一起的几条边一开始就看不见,或者过了很短的时间就看不见。照明是由一台幻灯机提供的,这台幻灯具有一组特殊结构的透镜。

微观结构的刺激

迄今为止报道的结果是从上述仪器中获得的,只要照明强度保持在一定水平以下便可以了。然而,如果明度增强,就会发生某种新的情况。雾就会聚集成规则的曲面,这种曲面从各个侧面将观察者包围起来;它的外表如同天空一般朦胧,而且是与天空相似的,因为其中央也稍稍扁平。雾的边缘的外表距离与正常条件下见到的墙壁边缘的外表距离是大致相同的。如果明度进一步增强,面就笔直地伸展成一个平面,它的外表距离可以十分明确地增加,一直延伸到实际距离以外。

为什么会出现从充满空间的雾向一个平面转变呢?梅茨格的实验(该实验由于太复杂而不能在这里描述)提供了答案。原因在于粉刷过的表面的“粒子”,或者,根据接近刺激的原理,原因在于下述的事实,即在较高强度的情况下,刺激分布不再完全是同质的,而是具有我们称之为一种微观结构(microstructure)的东西。现在距离刺激物体的微观结构当然是不受明度控制的;为什么接近的微观结构却有赖于明度呢?答案可以在调节(ac-commodation)中找到。由于微观结构,异质如此之小,以致于消失,如果眼睛不是完全聚焦的话,而且,只要明度较低,调节便不再完善——关于这一点,我们将在稍后讨论。我们暂且接受以下事实,即只有当接近刺激不再完全同质时,一个面才可以被看到,而微观结构对产生这一效应来说是充分异质的。

空间组织的某些基本原理

(1)原始的三维知觉

这些事实揭示了心物组织的若干基本原理:在最简单的可能的刺激条件下,我们的知觉是三维的(three dimensional);我们见到,充斥着中性色彩的空间伸展至或多或少不确定的距离,这种距离可能随着刺激强度而变化,尽管这一点尚未确定。

这一简单的事实废除了对下列问题的若干答案,该问题是:尽管我们的视网膜是二维的(two dimensional),为什么我们能够看到一个三维的空间呢?事实上,贝克莱(Berleley)提供了一个他认为是结论性的证据,即我们不可能“看”到深度,我们的深度知觉(Perception of depth)不可能是感觉的(sensory)。“我认为,大家都同意距离本身无法直接被看到。因为距离是一条线,其一端指向眼睛,它在眼睛的“领地”中仅仅投射一点,该点同样保持不变,不论距离是短是长”(p.162)。

为使这一论点成为结论性的,就需要两个相互依存的假设。首先,它包含了恒常性假设(constancy hypothesis),认为我们可以通过逐一考查其个别点来调查整个知觉空间。空间未被作为拓展中的过程来处理,而是作为独立的局部过程之和来处理。其次,该论点把刺激分布的维度与刺激结果的维度关联起来。由于视网膜是二维的,因此被见到的空间也必定是二维的。但是,视网膜是大脑三维视觉的界面(boundary surface),建立在这个界面上的力决定了一种扩展至整个三维区的过程。贝克莱的论点仅仅证明了,在某些条件下,客观上位于不同距离的两个点看上去似乎位于同一距离,但是,贝克莱的论点并未证明,这种距离必须是零,因为它没有指明两个物体出现的距离(参见考夫卡,1930年)。

与贝克莱的论点相似的一种谬论也在感觉心理学的其他领域出现了。经常被提及的这个论点是,如果一个特定的刺激样式具有一定的维度(在这些维度中,该刺激样式可以独立地变化),那末,相应的行为资料也将具有同样数目的维度,而且不会更多。因此,就我们关于光强的双重效应[白色和坚持性(white-ness and insistency)」的陈述而言,人们可能会对一个刺激变量仅与一个知觉变量相对应的问题提出异议,尽管就我所知,该论点尚未用于这一特例。但是,该论点已经用于声学,在声学中,人们可以从纯粹的正弦曲线波(sinnsoidal waves)频率和振幅的双重变异性中得出下列结论,即相应的听觉效果(纯粹的音调)也可能具有这两种属性。由此可见,这一论点的错误是显而易见的。如果使电流通过电解质,那末,电解质便分解,同时产生热,这两种结果——电解质的分解和热的产生均直接有赖于电流的强度。换言之,在原因维度和结果维度之间并不存在逻辑的联系(苛勒,1923年b,p.422)。而且,不论在空间知觉还是在声学中,这一虚假的假设已经对实验和理论产生了决定性影响。一俟我们从自己的解释原理中排除了这种假设,我们就没有必要再去说它了。

尚不清晰的原始三维空间

让我们回到三维空间上来。在三维空间的最为原始的形式中,它看上去几乎是同质的;由于雾的浓度随着距离而增加,因此也不必然如此。暂且撇开那点不谈,在整个可见的空间范围内充斥着同样的物质,也就是灰色的雾。我们的空间在正常条件下是多么地不同啊!即使在梅茨格的具有更强明度的实验中,我们的空间也是多么地不同啊!人们在一定的距离内见到一堵白色的墙,白色限于那个平面,处于观察者和墙壁之间的空间看上去并非白色,而是像“纯粹空间”那般透明。于是,我们看到原始空间缺乏正常空间所具有的那种清晰度(articulation)。与此同时,我们也看到,接近刺激的清晰度(仅仅是微观结构)可能产生有关知觉场的更为丰富的清晰度,空的空间(emptyspace)为一彩色面(coloured surface)所终止。由于清晰度要求刺激的异质性,也即对清晰度负有责任的特殊的力,因此我们必须进一步下结论说,同质的三维性,即雾,是一种简单的结果,也即我们的视觉所能看到的最简单的结果。我们被诱使着去说,绝对的同质刺激在神经系统中引起最小的事件;而且,在这些条件下可能很少发生。

(2)面是组织的强有力产物

根据前面的讨论,看来,一个面(surface)是一个高度组织的结果,它预示着特殊的力。这些力意味着异质性是一件不言而喻的事。如果一切参数(parameter)都具有恒常值的话,那么在一个系统内便不会发生任何事情。更为特定地说,异质刺激如何在生理场中产生力,这一点已由苛勒于1920年表明了,由于它要求某种物理-化学的详细情节,这里不得不予以省略。

由于接近刺激的微观结构,这些力产生了空的空间组织和界平面(bounding plane surface);也就是说,颜色先前曾弥散于整个空间,现在则聚集于由实际的力所支持的一个面上,而且在空间的其余部分中消失。看到一个平面,这似乎是世界上最简单不过的事情了;我们对于使这个平面存在的力是一无所知的,这种简单的知觉是一个高度动力(dynamic)的事情,一俟维持该平面的力受到干扰,该事情就会立即发生变化。强调这一点是重要的,因为人们关于空间知觉的传统陈述(尽管这些人对于我们的知识已经作出了最有价值的贡献),基本上是非动力的,也就是说,是纯粹几何学的,每个点都有它自己的“部位记号”(localsign),而一个面的外表则被认为是与特殊分布的部位记号之和相等的。

由大脑损伤而引起的力的弱化

对产生平面的力进行干预也会改变平面的外表。我们已经看到,当刺激异质性的丧失引起力的丧失时将会发生什么情况。但是,我们还可以用另外一种方式对力进行干预。正如我们所见到的那样,实际的心物过程有赖于内部条件和外部条件。让我们来使外部条件保持不变,而仅仅去改变内部条件;也就是说,让我们干预一下我们观察者的大脑,看看究竟会发生什么情况。当然,我们不能为了满足我们的科学好奇心而故意这样做。但是,意外伤害(战争提供了数目惊人的意外伤害的病例)却有助于实现我们的目标。可以毫不夸张地说,一切脑损均影响心物过程的组织,但是,症状表现则依据损伤部位和损伤数量而有所不同[黑德,1926年;戈尔茨坦(Goldstein),1927年]。

由于我们在人类身上无法进行系统的切除实验,因此,我们必须对偶尔送到我们手上的病例进行研究。现在,正巧有这样一个病例。盖尔布(Gelb)于1920年发现两个病人,他们的组织受到损坏的地方正是我们现在感兴趣的地方。他们根本无法看到真正的面,也就是说,在他们的心物场中发生的色彩过程从未聚集在一个平面上,而是始终具有某种厚度,这种厚度的变化正好与距离刺激的明度相反。因此,如果一个黑色的面看来好像是一个15厘米厚的黑色层,那么,一个白色的面看来就只是2-3厘米厚的一层东西了。同样的道理,在一个白色背景上的黑色圆圈就不会显现在该白色平面上;该黑色圆圈会从白色背景上朝着观察者的方向投射,并离他而去。此外,它还将比我们所见的显得更大一些;如果要求病人指向圆圈的界线,那么,他们会指向圆圈界线以外几个毫米的地方。由此可见构成和塑造图形的力在各个方面均变得更弱,而不仅仅在第三维度上变得更弱。在第三维度中要比在第一维度和第二维度中传播得更远,这当然是由于下列事实,即白色阻止黑色以幅射方向传播,而白色在第三维度中并不产生相似的影响。

(3)不同的组织阶段

让我们回到梅茨格的实验上来。在充斥着雾的空间的两个阶段和一个垂直平面的外表之间存在着一个阶段,在这个阶段中,所有颜色均聚集在一个面上,可是,它并不是一个平面,而是一个空“碗”,这个空碗从各方面把观察者包围起来。为了与前面的论点相一致,我们必须下结论说,这样一种曲面(curved sur-face)比一个平面更容易产生,也就是说,它比后者更容易与较弱的力相一致。按照这一解释,进一步的事实是,如果观察者在这只“碗”中滞留时间十分长久,那么该“碗”便开始分解成雾(然而,这雾并不传播到观察者那里,而是在他面前留下清晰的透明层),因为继续暴露于同一种刺激之下将会削弱由刺激施加的力。于是,我们便有了由刺激而产生的组织系列,这些刺激意味着不断增加的有效的力的强度:(1)颜色相等地分布在某个可见的容积(volume)内。这一结果尚未被报道;不论它是否实现,都必定由进一步的实验来确定。(2)颜色分布在整个可见的容积内,但是随着离观察者的距离的不断增加而变浓。(3)颜色限于可见容积的较远一端,该可见容积形成碗状的雾。(4)颜色聚集在雾状表面,该雾状表面像一只碗那般把观察者包围起来。(5)颜色聚集在垂直的平行平面中,该平面具有真正的面的特征(与朦胧性质相反)。第(3)到(5)预示了刺激的异质性,即微观结构;而(2)和(1)则在刺激实际上同质时发生。

(4)产生和维持行为空间的力

从上述三点中我们得出以下结论:一切现象空间(phenome-nal space)均为实际有效的力的产物;现象空间如同一只气球,气球的大小依据内部的气压而定,但不可把现象空间比作一只金属球。根据这一观点,即由梅茨格坚持的观点,空间尽可能地变小,尤其在第三维度中。这一观点是以以下事实为基础的,在梅茨格的实验中,空间随增加的明度而扩展,由完全同质的刺激产生的空间,比之普通空间,具有很小的深度。

这一假设有两个方面必须加以区别,即一般方面和特殊方面。一般方面是把视觉空间解释成动力事件,而不是用几何模式来进行解释,因此,这个方面将可全部纳入我们的系统。特殊方面假定,空间的“膨胀”需要力,因而力越弱则空间将变得越小,力是在特定时刻支持空间的。假设的这个部分看来至少是很可能针对一些特定空间的,梅茨格已经调查过这些空间。但是,在目前这个时刻,我不想超越这些限度对它进行概括。还存在其他可能性,即在其他一些条件下,空间将尽可能地大,以致于需要特殊的力去对它进行约束。要做到这一点,可将界线靠近观察者,或将任何部分物体靠近观察者。

(5)调节的作用

现在,让我们来看一下调节的作用(role of accommodation)。在梅茨格的实验中,如果调节得完善,刺激将会异质,并具有微观结构。如果调节得不完善,那么刺激分布将会完全同质。因此,透镜的作用是为更高的清晰过程创造条件,而不是为更低的清晰过程创造条件。如果视觉区将始终产生最小可能的反应是一条普遍规律的话,那末,调节便会以与实际相反的方式运作;它不会使眼睛聚焦于物体上,而是使之置于焦点以外,以便使创造最为同质的刺激分布成为可能。但是,即便在梅茨格实验的极端条件下,调节作用也并非如此;它使得刺激分布尽可能异质,从而使实际过程的分布尽可能清晰起来。我们将在论述场组织和行为之间的关系时(见第八章)重新讨论这个问题。

(6)同质空间的不稳定性

同质的空间,甚至空间中很大的同质部分,并不像十分清晰的空间那样稳定。人人都知道,当他处在一间完全黑暗的房间里时,他的眼前会飞舞着光点和光纹。类似的现象也会发生在同质的光照空间中,尽管不是自发发生的;然而,当观察者开始审视其视野,以便检验其是否真的是同质时,他可能会看见光点或云雾状的结构从其视野中飘过。产生这些现象的力导源于神经系统内部,但是,在清晰度良好的正常条件下,整个组织如此稳定,以致于这些力难以产生,即使产生的话,也不能影响牢固建立的结构。

刺激的时间异质性

在我们离开异质刺激条件下组织的讨论之前,我们必须排除一种限制,它迄今为止限制了我们的论点。刺激的同质性被理解为空间的同质性。我们只有在空间上的同质刺激持续时,才会关心时间段(period of time)的问题。但是,每一个这样的时间段都有在此之前的时间段和在此之后的时间段,因此,我们筛选出来的时间段必须被认为也处于过去时间和将来时间的承上启下的关系之中。换言之,我们既把我们的同质概念用于空间,也把我们的同质概念用于时间,然后,我们便可以看到,空间上同质刺激的突然开始在时间的刺激分布中引入了异质性;因此,有机体必须有新的作为,而这种新的组织在某些方面依赖先前的组织。我们可以这样认为,完善的同质性将既是时间的又是空间的。如果全部刺激(而不仅仅是视觉刺激)完全是同质的话,那么就根本不会有任何知觉组织,这样的说法是否太大胆了一点呢?当我们身处黑暗并闭上眼睛时,将会发生什么情况呢?起初,我们看到深灰色的空间,几乎并不拓展开去,但是过了一会儿,我们便什么也看不到了。也就是说,视觉世界暂时停止存在了。我不能肯定,当我们身处不完全黑暗但完全同质的空间中时,是否会产生同样的结果。

彩色的同质空间

然而,不是因为这种思辨才使我引入这个题目的,而是为了排除我们先前讨论中的一个限制。我们把我们的问题限于中性光的情形。现在,让我们来排除这种限制。在类似梅茨格的实验装置中,当那种投射到墙上的光通过彩色过滤器时,我们将会看到什么东西呢?由于这种实验尚未做过,因此我们并不知道。但是,也有可能作一下无把握的推测。为了简便的缘故,我们假设观察者在实验开始以前发现他本人处于一个正常照明的房间内。接着,同质的彩色照明闯了进来,进入到一个“正常的”空间之中,按照正常的中性原理,将会看到与各自的过滤器颜色相一致的色彩。但是,如果观察者在这个同质的彩色场中逗留的时间十分长久的话,该彩色场会不会看上去继续呈现彩色呢?很可能不会这样;按照我的期盼,它将逐渐变为中性的。为什么我期盼它会有这样的变化,如果真的发生了,其结果意味着什么,这些问题将在后面讨论(见第六章,边码p.256)。我们在这里仅仅提及它至少表明了下列可能性,即持续的同质彩色刺激将会最终产生与中性刺激一样的结果,根据我们的观点,在同质刺激条件下,会发生的东西将是尽可能地少。彩色比中性灰色意味着更多的东西;它是一个附加的事件,一个额外的结果。为了支持这一观点,我将仅仅提及盖尔布的两位病人(也就是前面提到过的两位病人)实际上是色盲的,一个病人是全色盲,另一个病人则是部分色盲,而且,通常情况下,空间组织的障碍往往伴随着颜色视觉的障碍。

我的假设并没有走得如此之远,以致于声称同质彩色刺激的结果是与同质中性刺激的结果完全一致的。相反,我期望这种结果在物体一自我(object-Ego)的关系中是不同的,这种物体-自我关系在前面曾有所提及。因此,我期盼被试会以不同的心境对同质的红色场和同质的紫色场有所感觉,即便两者均显现为灰色的雾。目前只需指出下述观点便够了,即颜色在其一切方面可能显现为整个组织的一个侧面。

行为空间不是纯视觉的

现在,让我们阐释最后一点,以便排除一种误解。倘若认为,在梅茨格的实验中,看到的空间仅仅有赖于视觉刺激的话,那末这样的假设将是错误的。行为空间(behavioural space)是一种更为综合的组织,它除了受视觉之力的支持以外,还受其他的力所支持,值得注意的是,受我们内耳前庭器官中产生的力所支持,还受所谓的深度感觉中产生的力所支持。当然,我们关于行为空间是一种更为综合的组织的说法,不仅对于梅茨格的实验(即由同质的视网膜刺激所产生的空间)来说是站得住脚的,而且对于其他各种视觉空间也是适用的。就功能而言,空间决非纯视觉的。

对我们的首次实验进行选择是十分容易的,因为刺激的“最简单的”例子可以从对我们问题的界定中推断出来。我们的下一步骤不得不更加武断了。当然,我们可以遵循首次实验为我们提供的方向走下去。我们发现,在不同距离进入各个面的空间构造需要特殊的力,同时,我们也进一步发现,如果这些力仅由另外的同质刺激的微观结构所引起,那么,我们将看到一个构成我们视觉空间之世界的同质的垂直平面。

由微观结构的同质刺激所产生的平面定位

现在,我们可以提出的第一个问题是:这个平面将在哪种距离上被看到?遗憾的是,我们尚无充足的实验数据来回答这个问题。梅茨格的实验仅仅证明了下述的情况:可察见的距离在某种程度上有赖于刺激的强度,而且它不一定与“实际”距离一样。这种表述当然只是一种简略。严格地讲,我们无法在实际的数据和现象的数据或行为的数据之间进行比较。当我们为了简便的缘故而使用这一不正确的术语时,我们意指在特定的情境中出现的行为性质与正常的条件下出现的行为性质是不同的。在我们关于同质平面距离的例子中,它可能意指:同质的平面出现在与一个平面不同的距离上,这个平面客观上处于同样的距离,但却形成了一个更加丰富的清晰场的部分。由于我们的行为受制于我们的行为场,这也将意味着,在这些情形中,我们的行为将很难适应地理场,或者说,在行为和行为场之间会存在不一致的情况。更为具体地说,如果我们用一根棒头去触及这个平面,我们开始时不会将棒头推得太远;但是,由于“触及”意味着一种十分明确的经验,这种经验在我们把棒头触及真正的墙壁以前是不会发生的,因此,我们将凭借我们的视觉空间的数据继续移动那根棒头。由此可见,由盖尔布描述的那两位病人,当他们从有轨电车上下来时,容易摔跤,这是因为,鉴于颜色的传播,地面对他们来说显得太近,他们的肌肉也相应地受到刺激。这样一来,真实世界和行为世界之间的不一致便始终可以根据行为来进行描述,而所谓行为,正如我们在第二章中已经见到的那样,既有赖于行为环境,又有赖于地理环境。

但是,让我们回到我们的问题上来。我们的问题是,在哪种距离上将出现同质平面。即便看到的距离不完全是恒定的,而且在较高的刺激强度下,看到的距离会比实际距离更大些,但是,它毕竟是有限度的。在梅茨格的实验中,眼睛和墙壁最近点之间的距离大约为1.25米。估计的最大距离不会大于该距离的2倍。因此,平面出现的距离范围,如果不是距离本身的话,也是可以充分地加以确定的。那末,它是否有赖于实际距离呢?遗憾的是,我们并不知道,因为在梅茨格的实验中这一点是保持恒定的。于是,存在着这样一种可能性,即行为距离也许有赖于实际距离。当然,实际距离无法直接地影响行为距离。两者之间肯定介入了某种东西。有三种因素可以扮演这种中介角色。第一个因素直接影响刺激:如果距离太大,那末粒子将会变得过于细小,以致于不起作用;微观结构也将消失,刺缴将变成同质,而我们将看到充斥雾的空间。

因此,第一个因素不能解释在同质墙壁的例子中实际距离和可察见距离之间具有正相关(positive correlation)。于是,剩下来的只有调节和聚合(convergence)这两个因素了。正如我们所见到的那样,调节只有在异质性的地方才有可能。而聚合在我们的实验条件下没有直接的决定作用。我们还无法证明这后一种说法是有根据的,因为我们尚无准备去陈述聚合的直接决定因素(见第八章),不过,聚合和调节在某种程度上是结合在一起的,结果是,当不存在相反的力时,特定的调节将保证某种聚合。

由于同质墙壁的外表距离将有赖于其实际距离,所以它必须通过调节和聚合的媒介才可以做到这一点。尽管已经进行了许多实验,以确定这两个因素在一个清晰的空间中对物体定位(localization)的影响,但是,根据这些例子为我们的同质平面作出推论仍然是危险的,即便这些实验的结果是单义的(univo-cal)。实际上,进行这样的推论也是不可能的,因为从这些实验中得出的结果是相当矛盾的。我们关于这两个因素的作用尚无确切的知识。但是,我们可以说:假定我们的平面的外表距离有赖于该平面的实际距离,从而也有赖于调节作用和聚合作用的话,那么这种依赖将是一种直接的依赖,而非一种间接的依赖。然而,早期的研究者们却持相反的意见;他们认为,调节和聚合能够影响知觉的数据,只要它们产生它们自己的分离感觉,这些分离感觉以这种或那种方式干预视觉,或者与视觉相熔合。我们无法接受这种观点。一方面,我们并非正常地体验到这类感觉,另一方面,这一理论涉及一种心理化学(mental chemostty),这种东西在我们的体系里没有位置,因为我们的体系是以实际的科学概念为基础的。我们记得的那种直接影响是神经系统本身的状况,这种状况与一定程度的调节和聚合相一致。它需要能量去调节一个附近的物体,并聚合一个附近的物体,在某些限度之内,物体越近则能量越大。这一事实,或者具有类似性质的其他一些事实,可能直接影响空间的组织,正如我们已经看到的那样(请参见边码 p.119),这种空间组织本身是消耗能量的动力过程。嗣后,我们将会看到,这样一种影响(在其存在之处)并不是十分值得考虑的,因此,很可能产生这样的情况,同质平面的现象距离可能十分广泛地有赖于它的实际距离。

异质刺激:在其他同质场中唯一异质的简单例子

现在,我们必须转向非同质的刺激;一个可能的程度是举出一个简单的例子,在这个例子中,刺激沿一个方向或若干方向逐点发生变化。我们暂且把这个问题搁置一下,留待后面讨论,现在让我们讨论这种情形,即在视网膜上同质刺激分布的范围内,存在一个不同刺激的限定区域。遗憾的是,我们无法在没有限定的情况下处理这种情形。迄今为止,尚未进行过能使这些条件得到满足的实验,即不仅正在闭合(enclosing)的区域,而且已经闭合(enclosed)的区域,都是绝对地同质的。接着,便是由梅茨格进行的实验。墙壁以这样一种强度予以照明,以致于看上去像一只碗。在墙的中央,有一个小方块留着不被照明,由于观察者必须抬起他的双眼,所以,这个未被照明的区域像一个不规则四边形投射于观察者的视网膜上面。观察者在这只“碗”的表面看到了一个黑色的不规则四边形,该“碗”的表面处于这样的区域之内,在那里,显现的不规则四边形与倾斜的头部平行,也就是说,向垂直面倾斜。

在这种情况下,正在封闭的刺激具有一种微观结构,而已经封闭的刺激则是同质的。然而,后者并不引起充斥空间的雾的知觉;与之相一致的场的这个部分出现在同样的面中,如同与正在闭合的刺激相一致的场的那个部分一样。换言之,这个面由正在闭合的刺激的微观结构所构成,这也决定了小的同质的闭合区域的结果。

然而,尽管这种结果是有趣的,却并未满足我们关于在另外的同质刺激中一个非连续性(discontinuity)结果的好奇心。因为在这一情形中,面的产生并不由于非连续性,而是由于正在闭合的刺激的微观结构。我们仍需了解最小的非连续性,即使充斥雾的空间的主要影响遭到破坏的非连续性。

详细说明的条件:场作为一个平面而出现

由于这一问题尚未得到解答,因此,我们必须限定我们的原始问题。我们将考虑一些情形,在那些情形中,周围的场作为一个平面而出现,不论是由于微观结构,还是由于一般的场清晰度(field articulation),我们将把我们的兴趣集中在由闭合的非连续性在这个平面内产生的结果上面。因此,我们要修改我们关于同质的整个场的假设,以便指一种相对来说大的同质场,而且在其界线以内的某处包含着一种同质的非连续性。实践中,我们将使用一些平面,上面有一些作为距离刺激的点。让我们注视任何一种这样的点,例如,在一张白纸上溅上墨汁而形成的点。于是,我们看到了墨渍。在这个简单的例子中,看来并不包含任何问题。那里有墨渍,而我们也见到了它。但是,我们已经了解到,我们对第一个问题的答案(也就是“为什么事物像看上去的那样”)是错误的。这里,有一个非常实际的问题,它因这类经验的普遍性事实而被隐匿起来了。在我们的新例子中出现的那个墨渍,与在完全同质的刺激条件下充斥雾的空间的外表一样,都是一个问题。看到一个墨渍是一种组织的结果,正如充斥雾的空间是一种组织的结果一样。当然,它是一种不同的组织,我们必须先来描述它的某个方面。

涉及这一例子的两个问题

(1)单位形成

首先,我们的墨渍是作为一个单位(unit)被看到的,它与场的其余部分相分离(segregated);其次,墨渍具有形状(shape)。两种描述均具有其理论内涵。为什么墨渍是一个单位?它如何与其周围的事物分离?答案看来是明显的:因为它的颜色不同。如果人们为“因为”一词提供正确含义的话,当然这是正确的答案。然而,颜色的不同与单位的形成不是同一码事。

单位形成和分离的第一定律

如果我们把场的一些部分的分离和统一(unification)归之于下列事实,即场的每一部分本身是同质地着色的(coloured),而且与场的环境着色不同,那么这便意味着一条普遍的定律,即单位形成和分离的定律,也就是说,如果接近刺激由若干不同的同质刺激区域所组成,那么接受同一刺激的那些区域将组织成统一的场部分,它们因为刺激之间的差异而与其他的场部分相分离。换言之,刺激的相等产生聚合力(forces of cohesion),而刺激的不等则产生分离力(forces of segregation),如果刺激的不等涉及一种突然变化的话。这些都是真正的动力观点,我们对于墨渍所作的统一和分离的解释,如果采用这种方式来解释的话,就不再是陈辞滥调了。

统一和分离的力

具有批判眼光的读者将倾向于要求为我们的动力观点提供某种证明。他会争辩说,这种动力观点是直接从我们理论的基本前提中引伸出来的,但是,他想了解这种动力观点赖以存在的事实基础。让我来满足批评者的要求。我们对心物组织(它不属于物理组织)并无特殊主张,我们将指出,正是这同样的观点却在物理学中站得住脚。为此,让我们来运用苛勒的一个例子(192年,p.138)。如果把油倒入液体之中,两者不相混合,那么,油的表面将在分子的相互作用中明显地保持着,可是,如果该液体具有相同的密度,那末,油便会形成球体,在其他液体中游动。不过,批评家会说,也有一些液体能与油相混和,这样一来,就没有任何一种差异会在物理学中产生这种分离的力。你难道没有在心物组织中获得过任何一种相似的东西吗?我们确实获得过。因此,这一事实比其他事情更能证明:统一和分离实际上是由力产生的动力事件,而不是仅仅由几何模式产生的动力事件。

利布曼效应

我要提及由S.利布曼(S.Liebmann)发现和研究的一种效应。一种彩色图形(普通意义上的着色),譬如说一种蓝色图形,在中性的背景上,开始丧失其轮廓和确定性,并简化其形状,如果它是错综复杂的,而且亮度(luminosity)接近于它所在的背景的亮度的话。当这两种亮度相等时,其形状会完全丧失;于是便见到了一种模糊的起伏的污渍,甚至这种污渍形的东西也会在短时间内完全消失。因此,正在闭合的区域和已经闭合的区域之间的刺激差异,如果仅仅是一种颜色的差异,那么至少可以这样说,这种差异比起亮度中的微小差异来,很少有力量在心物场中产生这两个区域的分离。于是,看上去十分相似的两种灰色将会提供十分稳定的组织,如果一种灰色用于图形而另一种灰色用于背景的话,一种深蓝色和看上去十分不同的但却具有同样亮度的灰色将产生不出组织来。这就证明了刺激差异本身并不等于区域的分离;后者不仅是视网膜分布的几何投射,而且是一种动力效应,这种动力效应与某些刺激差异一起发生,而不是与其他一些刺激差异一起发生,当某些十分大的刺激差异不属于对组织来说产生必要的力的那个种类时,它也不可能与这些刺激差异一起出现。

硬色和软色

我们可以把两个具有不同亮度的面所产生的生理过程比作不能混和的两种液体,同时,把两个具有相等亮度但颜色不同的面所产生的生理过程比作可以混和的两种液体。利布曼的这一发现经过我们和M.R.哈罗尔(M.R.Harrower)从事的一项研究而被扩展了。我们发现,在这方面,并不是所有的颜色都是相似的,当一种颜色与具有同样亮度的灰色相混和,产生这种灰色的光的波长越短,混和的情况就越好。由此可见,红色是分离得最好的颜色,而蓝色则是分离得最少的颜色。因此,我们引进了硬色和软色(hard and soft colours)之间的区分,红色和黄色属于前者,蓝色和绿色则属于后者。我们也在颜色所拥有的组织能力和明度差异之间作了量的比较(I. pp.159 f.)。观察者坐在两只旋转的具有同样亮度的灰色圆盘前。每一只圆盘均可通过任何一种颜色与背景的灰色相混合,或不同明度的灰色与背景的灰色相混合而产生一个圆环。在一只圆盘上,圆环含有一定量的颜色,譬如说,20度的蓝色,也即一张深蓝色的纸。这样就产生了朦胧圆环的外形。而在另一只圆盘上,由于引进了或淡或深的灰色纸,因此形成的圆环也或明或暗。观察者必须确定,需要多少淡灰色或深灰色才能产生与另一只圆盘上的色环同样明显和清楚的圆环。在所表明的例子中,中性环所需的淡灰色的量是这样的,只要对圆盘的其余部分增加一定程度的白色就行了。

我的更多文章

下载客户端阅读体验更佳

APP专享