PalaBos 编程、结构及其拓展
2011-10-20 18:58阅读:
http://www.lbmethod.org/
PalaBos的是一款高效的流体模拟及其建模库,开发基于C++的STL(标准模板库),有极强的拓展性!尽管其源代码是开放,但是基于PalaBos的FlowKit公司已于2011年9月开始运营(http://www.flowkit.com/),主要为流体力学相关领域提供解决方案,并定制软件。主要的开发者为我的日内瓦朋友Jonas
Latt博士,另外一个重要开发成员Orestis博士也是我的合作者和好朋友,其主要的贡献在于湍流模型和多块加密的代码的开发。在版本1.0中,目前二维的多块加密是可用的,三维的曲面边界可用,需要提供stl几何文件(参:examples/showCases/aneurysm)。PalaBos的主要特点在于,其在并行结构上采取并行机制与模型分离的方式,使得应用建模与并行机制不相关。这也使得PalaBos的易于扩展。下面举例来说明其代码特点:
对于二维计算下面两个基本的文件必须包括
#include 'palabos2D.h'
#include 'palabos2D.hh'
#include <vector>
#include <cmath>
#include <iostream>
#include <fstream>
#include <iomanip>
基本的名字空间
using namespace plb;
using namespace plb::descriptors;
using namespace std;
typedef double T;
基本模型的描述。对于PalaBos,众多模型的应用,都是通过DnQmDescriptor来描述的。用户可自定义!后续博文我将对其结构进行解释!
#define DESCRIPTOR D2Q9Descriptor
初场的定义,建议使用这种方法
T poiseuilleVelocity(
plint iY, IncomprFlowParam<T> const& parameters) {
T y = (T)iY /
parameters.getResolution();
return 4.*parameters.getLatticeU() *
(y-y*y);
}
压力的定义
T poiseuillePressure(plint iX, IncomprFlowParam<T> const&
parameters) {
T Lx = parameters.getNx()-1;
T Ly = parameters.getNy()-1;
return
8.*parameters.getLatticeNu()*parameters.getLatticeU() / (Ly*Ly) *
(Lx/(T)2-(T)iX);
}
密度场的定义
T poiseuilleDensity(plint iX, IncomprFlowParam<T> const&
parameters) {
return
poiseuillePressure(iX,parameters)*DESCRIPTOR<T>::invCs2 +
(T)1;
}
根据坐标进行速度初始化
template<typename T>
class PoiseuilleVelocity {
public:
PoiseuilleVelocity(IncomprFlowParam<T> parameters_)
:
parameters(parameters_)
{ }
void operator()(plint iX, plint iY,
Array<T,2>& u) const {
u[0] =
poiseuilleVelocity(iY, parameters);
u[1] =
T();
}
private:
IncomprFlowParam<T> parameters;
};
根据坐标进行密度初始化
template<typename T>
class PoiseuilleDensity {
public:
PoiseuilleDensity(IncomprFlowParam<T>
parameters_)
:
parameters(parameters_)
{ }
T operator()(plint iX, plint iY) const
{
return
poiseuilleDensity(iX,parameters);
}
private:
IncomprFlowParam<T> parameters;
};
零速度场初始化
template<typename T>
class PoiseuilleDensityAndZeroVelocity {
public:
PoiseuilleDensityAndZeroVelocity(IncomprFlowParam<T>
parameters_)
:
parameters(parameters_)
{ }
void operator()(plint iX, plint iY, T&
rho, Array<T,2>& u) const {
rho =
poiseuilleDensity(iX,parameters);
u[0] =
T();
u[1] =
T();
}
private:
IncomprFlowParam<T> parameters;
};
枚举类型,表示边界类型
enum InletOutletT {pressure, velocity};
建立几何
void channelSetup( MultiBlockLattice2D<T,DESCRIPTOR>&
lattice,
IncomprFlowParam<T> const&
parameters,
OnLatticeBoundaryCondition2D<T,DESCRIPTOR>&
boundaryCondition,
InletOutletT inletOutlet )
{
const plint nx = parameters.getNx();
const plint ny = parameters.getNy();
下边界
boundaryCondition.setVelocityConditionOnBlockBoundaries
(
lattice, Box2D(0, nx-1, 0, 0) );
上边界
boundaryCondition.setVelocityConditionOnBlockBoundaries
(
lattice, Box2D(0, nx-1, ny-1, ny-1)
);
设置相关边界
if (inletOutlet == pressure) {
boundaryCondition.setPressureConditionOnBlockBoundaries
(
lattice,
Box2D(0,0, 1,ny-2) );
boundaryCondition.setPressureConditionOnBlockBoundaries
(
lattice,
Box2D(nx-1,nx-1, 1,ny-2) );
}
else {
boundaryCondition.setVelocityConditionOnBlockBoundaries
(
lattice,
Box2D(0,0, 1,ny-2) );
boundaryCondition.setVelocityConditionOnBlockBoundaries
(
lattice,
Box2D(nx-1,nx-1, 1,ny-2) );
}
设置常密度和速度,边界的速度和密度同时被施加
setBoundaryDensity (
lattice, lattice.getBoundingBox(),
PoiseuilleDensity<T>(parameters)
);
setBoundaryVelocity (
lattice, lattice.getBoundingBox(),
PoiseuilleVelocity<T>(parameters)
);
初始化平衡态
initializeAtEquilibrium (
lattice, lattice.getBoundingBox(),
PoiseuilleDensityAndZeroVelocity<T>(parameters)
);
初始化模拟系统
lattice.initialize();
}
图片文件保存
void writeGif(MultiBlockLattice2D<T,DESCRIPTOR>& lattice,
plint iter)
{
const plint imSize = 600;
ImageWriter<T>
imageWriter('leeloo');
imageWriter.writeScaledGif(createFileName('u', iter, 6),
*computeVelocityNorm(lattice),
imSize, imSize
);
}
VTK 保存
void writeVTK(MultiBlockLattice2D<T,DESCRIPTOR>&
lattice,
IncomprFlowParam<T>
const& parameters, plint iter)
{
T dx = parameters.getDeltaX();
T dt = parameters.getDeltaT();
VtkImageOutput2D<T>
vtkOut(createFileName('vtk', iter, 6), dx);
vtkOut.writeData<float>(*computeVelocityNorm(lattice),
'velocityNorm', dx/dt);
vtkOut.writeData<2,float>(*computeVelocity(lattice),
'velocity', dx/dt);
}
计算均方根误差
T computeRMSerror ( MultiBlockLattice2D<T,DESCRIPTOR>&
lattice,
IncomprFlowParam<T> const&
parameters )
{
MultiTensorField2D<T,2>
analyticalVelocity(lattice);
setToFunction( analyticalVelocity,
analyticalVelocity.getBoundingBox(),
PoiseuilleVelocity<T>(parameters) );
MultiTensorField2D<T,2>
numericalVelocity(lattice);
computeVelocity(lattice, numericalVelocity,
lattice.getBoundingBox());
return 1./parameters.getLatticeU() *
std::sqrt(
computeAverage( *computeNormSqr(
*subtract(analyticalVelocity, numericalVelocity)
) )
);
}
主函数
int main(int argc, char* argv[]) {
plbInit(&argc, &argv);
global::directories().setOutputDir('./tmp/');
基本参数,Orestis为我加入了另外的个构造函数,可直接在物理空间中定义这些参数!后续我将给出分析!
IncomprFlowParam<T> parameters(
(T) 2e-2, // uMax
(T) 5., // Re
60,
// N
3.,
// lx
1.
// ly
);
const T logT
= (T)0.1;
const T imSave =
(T)0.5;
const T vtkSave = (T)2.;
const T maxT
= (T)15.1;
const InletOutletT inletOutlet =
velocity;
写日志文件
writeLogFile(parameters, 'Poiseuille
flow');
使用MultiBlockLattice
MultiBlockLattice2D<T, DESCRIPTOR>
lattice (
parameters.getNx(),
parameters.getNy(),
设置松弛参数
new
BGKdynamics<T,DESCRIPTOR>(parameters.getOmega()) );
声明边界
OnLatticeBoundaryCondition2D<T,DESCRIPTOR>*
boundaryCondition =
createLocalBoundaryCondition2D<T,DESCRIPTOR>();
channelSetup(lattice, parameters,
*boundaryCondition, inletOutlet);
主循环
for (plint iT=0;
iT*parameters.getDeltaT()<maxT; ++iT) {
if
(iT%parameters.nStep(imSave)==0) {
pcout << 'Saving Gif ...' <<
endl;
writeGif(lattice, iT);
}
if
(iT%parameters.nStep(vtkSave)==0 && iT>0) {
pcout << 'Saving VTK file ...'
<< endl;
writeVTK(lattice, parameters, iT);
}
if
(iT%parameters.nStep(logT)==0) {
pcout << 'step ' << iT
<< '; t=' << iT*parameters.getDeltaT()
<< '; RMS error=' << computeRMSerror(lattice,
parameters);
Array<T,2> uCenter;
lattice.get(parameters.getNx()/2,parameters.getNy()/2).computeVelocity(uCenter);
pcout << '; center velocity='
<< uCenter[0]/parameters.getLatticeU() << endl;
}
碰撞迁移,此函数不再有bool类型参数,其不同于Openlb
lattice.collideAndStream();
}
删除边界对象
delete boundaryCondition;
}
由此上面代码可以看出,PalaBos的结构是非常清晰的,用户在实现过程也异常的简单!
为了推广PalaBos在国内的应用,我将在后续博文对PalaBos从应用和扩展方面作详细介绍!