新浪博客

简单五步学会使用∆∆Cq法(∆∆Ct法)计算实时定量PCR(qPCR)基因表达差异

2014-06-24 16:14阅读:
用一个简单的例子,旨在演示某种处理(treatment)下某基因(TAR)mRNA水平变化(为了简化,假设这次实验每组6个样,即生物重复,没有使用技术重复,并假定其内参基因(REF)稳定,不再涉及内参的可靠性等问题)
即只简单演示∆∆Cq法如何计算倍数改变。
主要分为如下五步:
第一步:经非参基因进行归一化(Normalize to REF): Cq=Cq(TAR)-Cq(REF)
第二步:转化为指数表达(Exponential expression transform)Cq Expression=2-Cq
第三步:组内样品指数表达的平均值与标准差(Average replicates and calculate standard deviation)
第四步:以对照组为参照进行归一化(Normalize to treatment control)
第五步:变化的百分比[%change=(1-
∆∆Cq)*100]

A
B
C
D
E
F
G
H
T
J
Groups
Cq FER
Cq TAR
Cq
Cq Expression
Mean Cq Expression
Cq Expression Std. Dev.
∆∆Cq Expression
∆∆Cq Expression Std. Dev.
%
change



=CqTAR-CqREF
=2^-ΔCq
Average Replicates
Std. Dev.
Replicates
Normalized to mean in control
Normalized to mean in control
=(1- ∆∆Cq)*100
Treatment
20.6
27.6
7.0
0.0078
0.0215
0.0133
0.0639
0.0395
93.61

20.8
27.3
6.5
0.0110






20.9
27.6
6.7
0.0096






20.7
25.6
4.9
0.0335






20.6
25.4
4.8
0.0359






20.6
25.6
5.0
0.0313





Control
20.5
22.2
1.7
0.3078
0.3369
0.0707
1.0000
0.2098


21.2
22.5
1.3
0.4061






21.0
22.5
1.5
0.3536






21.2
22.5
1.3
0.4061






21.0
22.6
1.6
0.3299






21.2
23.4
2.2
0.2176






各栏目的含义如下:
Column A: 分组
Column B: 参考基因的Cq(Cq value for REF)
Column C: 靶基因的Cq(Cq value for TAR)
Column D: 归一化到相应参考基因的表达(Normalize Cq values for all TAR samples to the REF gene of its corresponding sample, Cq)
Column E: 指数转化,该方法的前体是100%的扩增效率(Exponentially transform Cq to Cq Expression for each biological replicate; 2 raised to the -Cq yields Cq Expression. 100% qPCR amplification efficiency for all reactions, or a doubling of amplicon with each subsequent qPCR cycle.
Column F: 指数转化值的组内均值(Mean of Cq Expression replicates.)
Column G: 指数转化值的组内标准差(Standard deviation of the mean for Cq Expression replicates.)
Column H: 与对照组归一化处理,获得∆∆Cq表达值(Normalize the TAR Mean Cq Expression to that of the Control to obtain ∆∆Cq Expression.)
Column I: ∆∆Cq表达值的标准差(To find the standard deviation of ∆∆Cq Expression, divide the standard deviation of the targeted sample’s Mean Cq Expression by that of the Control sample.)
Column J: 处理所致变化的百分比(Percent change is calculated by subtracting the normalized ∆∆Cq Expression from 1 (defined by the level of expression for untreated sample) and multiplying by 100.)

参考文献
Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408.
Thermo. Demonstration of a ∆∆Cq calculation method to compute thermo scientific relative gene expression from qPCR data

北京群晓科苑生物技术有限公司
www.qbiotec.com
www.qbioscience.com
Tel: 010-84504282/64880108
qbioscience@126.com

我的更多文章

下载客户端阅读体验更佳

APP专享