一般来说滞回曲线最直观反映的是试件受力和产生位移的关系,这样的曲线中可以看到在某个力作用下产生的位移有多少。
一般来说曲线能简化为好几个直段,第一个直段跟第二个直段的交点就是弹性段跟塑性段的交点,也就是弹性段结束,塑性段开始的时刻,从这个点可以看出弹性模量、弹性极限等数据;以此类推,在塑性段的结束点也可以得出类似的关于塑性性能的数据。
而由于位移跟受力的乘积是能量,所以滞回曲线所围成的面积就是所消耗的能量。
再深入一点看,反复实验一般直到构件破坏结束(这要看实验描述),从这样的实验里面还可以得出试件的疲劳数据,得出抗疲劳性能等等数据
具体讲解滞回曲线的书籍确实没有,现在市面上很多钢筋混凝土非线性分析或者钢筋混凝土有限元分析等方面的书籍,也仅仅都是点到为止,内容浅显,重复多创新少,几乎都是一带而过。
滞回曲线这方面的内容很多都是散见于一些零星的书籍或者文献中,需要自己留意收集整理了。
在进行弹性结构时程分析时,结构刚度为常数,即力一变形关系符合虎克定律(直线关系)。在进行弹塑性结构时程分析时,结构屈服后要重新建立刚度矩阵,因而需要建立结构力一变形的弹塑性关系,如图1所示,即恢复力模型。
结构构件在周期性反复荷载作用下,可能发生图2所示的恢复力曲线,这是钢筋混凝土构件具有代表性的非线性恢复力特性曲线,由于曲线具有滞回性质,又称滞回曲线或称滞回环。
在钢筋混凝土受弯构件中,由于纯弯区段只有垂直裂缝,滞回曲线在卸载后不能回到原点的主要原因是受压区混凝土的塑性变形和受拉区钢筋与混凝土之间的滑移,整个弯矩(M)一曲率(φ)图形呈现出“梭形”的曲线[图3(a)]。在剪弯构件中,不仅有垂直裂缝,还有斜裂缝。斜裂缝的张合使滞回曲线变成带有“弓”形的特点,如图3(b)所示的侧向力(P)一位移(δ)曲线。在压弯构件中,轴向力的存在对裂缝的发展起了抑制作用,如图3(c)所示,与受弯构件的弯矩一曲率曲线[图3(a)]相比,压弯构件的图形偏向弯短轴,提高了构件抗弯承载能力,但减少了曲率的塑性变形能力,以剪切变形为主的剪力墙,由于斜裂缝的张
一般来说曲线能简化为好几个直段,第一个直段跟第二个直段的交点就是弹性段跟塑性段的交点,也就是弹性段结束,塑性段开始的时刻,从这个点可以看出弹性模量、弹性极限等数据;以此类推,在塑性段的结束点也可以得出类似的关于塑性性能的数据。
而由于位移跟受力的乘积是能量,所以滞回曲线所围成的面积就是所消耗的能量。
再深入一点看,反复实验一般直到构件破坏结束(这要看实验描述),从这样的实验里面还可以得出试件的疲劳数据,得出抗疲劳性能等等数据





