新浪博客

EVA Q 开场6分38秒宇宙力学考证

2013-09-12 13:50阅读:
内容
1. 文章说明
2. 用语解说
3. 轨道力学
4. Hill's equations
5. US作战验证
6. 今后的课题

1 文章说明
本文是在观赏EVA Q后,针对EVA Q开场638秒这段期间的EVA初号机夺回作战场景进行考证,主要是分析是该作战基于什么物理法则,以及在现实中动画展现的作战场景是否可以成立,从宇宙力学的角度进行考证
本文内容是基于笔者观看EVA Q后的独自判断,所以与官方实际设定可能会有所出入。本文以及本人与
EVA Q制作方没有任何关系
本文仅仅是从宇宙力学的角度对EVAQ 进行分析而已,实际上还是要以影片内容或者说故事性来评判影片本身的好坏。不过还是要说明EVAQ的开场是十分帅气的,只要仔细观察就会发现,影片细节画面对于真实宇宙的还原度很高,制作人员都是有着丰富的知识以及精巧的技术的,十分感谢制作方能让观众看到这么一部影片
在实际成立性检验方面本文已经将相关公式和计算,降低到了最小的数量和难度上,如果还想继续压缩公式数量的话,恐怕难以办到。
文章中提到的时间,都是以影片中经过的时间为基础进行计算,特别是剧中辅助喷射阶段,比起实际上的火箭和推进器花费的时间要更短
如果有人发现本文中有所遗漏,还望不吝赐教
2 用语解说
这些都是在EVAQ中出现,在宇宙工程学中实际使用的用语说明

追迹班
火箭发射管制班的一种
火箭发射后,要让火箭按照预定线路正常运转飞行,要随时检查火箭的运作情况,包括使用望远镜和相机的“光学追踪”(光学管制),以及使用异频雷达收发机和遥感雷达相配合取得火箭位置速度的“雷达追踪”等
一般来说,追迹班都是在地面进行工作,既有手动追踪又有自动追踪。“雷达追踪”主要还是机器自动控制并完成的。现在基本都是抛物面天线自动追踪反馈,而望远镜方面还是由人工确认操作,二者相结合进行
在影片一开始,明显是追迹班中的光学管制班使用望远镜,手动调整方向,捕捉二号改的运行情况并进行报告(画面有所晃动)
不过在二号机改的画面移至正中央后,画面十分稳定,可以认为是采用了异频雷达收发机或某种图像处理技术使得追踪由手动变为自动
RCS
反作用控制系统(Reaction Control System)的简称
在宇宙空间微小重力的情况下,想要对火箭或者是飞船的回转运动,并行运动进行控制,就要依靠RCS,大部分情况下都是使用较小的的推进器,利用作用力反作用力法则来实现控制
RCS是由复数的小型推进器组成,将推进器组合起来,同步进行喷射,一般都是三个回转轴,对应着三个方向的组合,经过这种组合,可以使物体在宇宙空间中进行任意的回转运动与并进运动
EVA <wbr>Q <wbr>开场6分38秒宇宙力学考证
RCS主要是对火箭或者飞船的的运动轨迹进行调整。特别是在火箭发射中,前面提到的追迹班如果通过观测发现火箭运行轨迹出现偏差时,就会及时报告,之后总控通过RCS来修正火箭运行轨迹
这种轨迹修正,姿态调整都是瞬时完成的,所以RCS所使用的推进器都是可以在短时间内进行喷射,这种推进器就是为了让喷射的开始和结束时间相隔很短而制造的。推进剂通常使用联氨(hydrazine
EVA Q中二号机改搭载的RCS喷射火焰是青白色,如果从火焰颜色的角度来说,推测这个RCS所使用的应该是属于联氨(肼)系燃料的超大型单一燃料推进系统
掷荷Jettison
掷荷”就是将不需要的火箭载荷“抛弃”比如助推器“抛弃”或者说“分离”的概念在宇宙工程学领域中的表达,不过实际上Jettison并没有详细的界定词义究竟是“抛弃”还是“分离”。
值得注意的一点是在宇宙工程学领域“分离”Separation)并不代表是“掷荷”Jettison)虽然二者的行为界定并不是很清晰,总的来说“掷荷”相对于“分离”更具有主动性
我们将以下面的例子来阐明“掷荷
以日本的H-IIA运载火箭的SRBA Solid Rocket Booster固体燃料起飞助推火箭)为例,SRB-A采用的是捆绑式分离,上端部分和下端的分离发动机根据不同情况从主火箭分离,SRBA的本体是几个部件与杆系结构(连接主火箭)结合而成。在解除时,SRBA的杆系结构会以一端为支点进行回转, SRBA上半部分会与主火箭分离,同时下端的分离发动机开始点火,这时用于连接的爆炸螺栓和分离螺母分别解锁。这样的话SRBA基本是以45°角的方向从主火箭分离(实际的分离方式远远比说的要复杂具体的可以参考日本维基SRBA条目)
EVA <wbr>Q <wbr>开场6分38秒宇宙力学考证
美国航天飞机的SRB也是如此,在SRB燃料即将耗尽前,爆炸螺栓解锁,SRB开始从本体分离,同时SRB上横向设置的脱离用固体火箭开始喷射,完成分离。更准确的说是SRB的喷射口变更方向,使得SRB向远离航天飞机本体的方向飞去
在阿波罗计划所使用的土星5号载人火箭上,设置了紧急时使用的逃生火箭,配备了逃生用的太空舱。当土星5号完成第一阶段分离后,紧急逃生用火箭点火,脱离主火箭
EVAQ中这点也可以体现,当助推单元分离后,与主推进系统不同的分离用推进系统开始工作使得助推单元远离二号机改本体,将助推单元与主体二号机改分离这一步只能算是单纯的“分离”(Separation),而之后脱离用推进系统工作促使助推单元离开才算的上是“掷荷”Jettison
电子装备系统检查
为了取得火箭和卫星内部的电力和信号而设置的配线群组成的“电子计量装备”又可以简称为“计装”,所谓的“电子装备系统”指的应该就是“计装”
在火箭或卫星出现分离时,本体和分离单元,都有“可插拔式连接器”,它们可以将机械位置的相对变化用电子信号方式反映出来。即使是在结合状态下本体和分离部分也要依靠它们来获得电子情报
在分离单元实际分离时,如果由可插拔式连接器以外的原因导致本体与分离部分产生异常的话,将会采用热插拔方式来解决异常分离
当然由其他原因产生问题的可能性是无法排除的(比如在有线通信的情况下,接收端无响应,终端状态调整后依旧无法正常通讯),所以即使在分离后,依然要对终端设备及其相关周边设备进行检查
S-IC
指的是在阿波罗计划所使用的“土星”系列火箭中,土星五号火箭的第一级。S-IC由波音公司制造,而它的五台F-1发动机则是由洛克达因公司制造
1996洛克达因公司被波音公司收购,之后在2005年又被普惠公司收购,美国的企业之间收购合并十分激烈,在航空航天领域也是如此,拥有自主技术的公司,生产行业标准产品的公司,不断地被合并收购,这样做的结果就是促进了波音公司和Aerojet这样的巨头企业不断成长。
S-IC的重量是2280吨,推力为30×106 N,比冲量(推进系统的燃烧效率)为有效高度300sec,海面上为260sec
在土星系列火箭中,F-1发动机也属于十分优秀的发动机,拥有着极高的可靠性
F-1使用的燃料是煤油,以液氧作为氧化剂,由于煤油中含有系其分子结构中含有碳原子。碳素原子燃烧时会发出橙光,所以喷射出的火焰也是橙色为主要颜色
这也是在EVA Q中,助推器产生喷射产生橙光而非RCS喷射产生青白色光的原因
3 轨道力学
在开头部分特别是最开始的130秒,EVA Q的画面完全符合轨道力学进行了忠实的再现,这里确实要感叹制作组成员对于科学知识的掌握
在现实中详细的运行轨道计算是非常繁琐细致的,要考虑到很多复杂的情况,不过要是在一开始验证轨道是否成立的话,使用手工计算(必需物科学计算器)就可以。例如火星探测器,在特殊条件下的轨道设计初期验证,使用高中基本数学知识就可以进行,比如余弦定理,矢量,矩阵,平方根计算。如果使用大学中所学到的线性代数和解析力学的话可以进一步详细计算
当然如果想要更加精准计算验证的话就要使用到特殊函数和摄动理论,同时也要引入相对论的内容,这样一来的话使用手工计算就不太可能了,这时必须要借助计算机完成运算并进行数值分析
轨道力学的基础是建立在开普勒定律上,开普勒定律由以下三部分组成
第一定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中
第二定律:在相等时间内,太阳和运动中的行星的连线(向量半径)所扫过的面积都是相等的
第三定律:是指绕以太阳为焦点的椭圆轨道运行的所有行星,其椭圆轨道半长轴的立方与周期的平方之比是一个常量
在开普勒以前的地心说时代,采用的都是阿波罗尼奥斯地心说模型(均轮与本轮模型),它假设行星的运行轨道为一个圆圈,而这个圆圈的圆心又循着另一个圆圈的轨迹绕行。在当时利用这个模型对于行星的预测还算是比较准确,这个模型也统治了西方天文学界1000多年。
EVA <wbr>Q <wbr>开场6分38秒宇宙力学考证
均轮与本轮模型图解
开普勒曾经试图用地心说模型解释第谷·布拉赫所观测到的超大行星运动数据,不过列出的算式与观测数据无法完全吻合,在当时的欧洲,教会主宰一切,上帝创世的观念下,万能的上帝创造的行星,必定按照完美的圆形轨道运转,而椭圆轨道对于当时的天文学家基本是无法想象的,开普勒能跳出固有思维创造性的提出“椭圆轨道”确实是难能可贵。
开普勒坚信第谷·布拉赫所记录的行星运行数据无误,而问题出在了人们一直信奉的地心说上,当他假设行星是按照椭圆轨道运行,并以此为基础重新构建算式后,计算结果与观测记录达到了完全吻合,也印证了椭圆轨道的正确性。
在开普勒定律发现后,现在的我们才能真正的在一开始就能正确计算行星位置,同时也为牛顿的万有引力定律打下了坚实的基础
人工卫星的轨道是符合开普勒三定律(其实就是将太阳和地球的位置关系,换成了地球和人造卫星),也适用轨道力学,在宇宙工程学领域,开普勒定律是最先要学习的内容,在实际的人工卫星和空间探测器的轨道设计中,也要使用到
在喷射行进的轨道运动中,重力和离心力理论上是维持平衡的状态,太空舱内将是零重力的情况,不过实际上由于稀薄的大气摩擦,地磁场,太阳的光压力,微小的外力和惯性力,这种零重力状态是不存在的。在宇宙工程学中一般使用μG来表示这种微重力状态
下面我们做一个简单的轨道力学计算(或者说高中基础物理计算)
下面左图显示的是圆形轨道情况,重力常数为 mu (万有引力常数与地球质量相乘,约3.986×105 km3/s2 ,轨道半径为r,已知轨道速度公式为 v1=sqrt(mu/r) ,我们要求的就是这个轨道速度
那么在轨道高度为400km的圆形轨道,进行周期回转的太空舱轨道速度(已知地球半径为6378km)为 v1=7.67 km/s
下方右图红色部分为椭圆轨道,它的轨道长半径我们用α表示,现在位置(与地心距离为r)的轨道速度公式为 v2=sqrt(mu(2/r-1/a)) ,那么在远地点为400km近地点为200km的椭圆轨道上,轨道长半径为 6678 km,远地点轨道速度为

我的更多文章

下载客户端阅读体验更佳

APP专享