本文展示了利用几何图像分析特性来计算多模光纤耦合效率的方法。
还有使用IMAE操作数优化多模光纤耦合效率的方法。该方法只适用于包含大量模式的多模光纤。
如果想使用几何光线来模拟多模光纤耦合,那么光纤的纤芯直径至少要比波长大10倍以上,这样纤芯可以支持很多很多的横模。如果光纤是可以传播二阶或三阶模的少模光纤,那我们必须使用物理光学来进行光纤耦合分析。在这篇文章中,“多模”定义为光纤支持太多种横模了,以至于光纤可以被视为一个导光管。
当在物面上定义了一个具有确定尺寸和形状的扩展光源后,几何图像分析可以生成任何表面的辐照度分布。此外,如果光线入射到待测面时的角度大于设定的阈值时,它可以过滤掉这部分光线。使用示例文件,我们将演示如何使用几何图像分析功能来计算多模光纤耦合效率。
还有使用IMAE操作数优化多模光纤耦合效率的方法。该方法只适用于包含大量模式的多模光纤。
下载
联系工作人员获取附件简介
我们可以使用OpticStudio中的几何图像分析(Geometric Image Analysis)来计算多模光纤的耦合效率。如果想使用几何光线来模拟多模光纤耦合,那么光纤的纤芯直径至少要比波长大10倍以上,这样纤芯可以支持很多很多的横模。如果光纤是可以传播二阶或三阶模的少模光纤,那我们必须使用物理光学来进行光纤耦合分析。在这篇文章中,“多模”定义为光纤支持太多种横模了,以至于光纤可以被视为一个导光管。
当在物面上定义了一个具有确定尺寸和形状的扩展光源后,几何图像分析可以生成任何表面的辐照度分布。此外,如果光线入射到待测面时的角度大于设定的阈值时,它可以过滤掉这部分光线。使用示例文件,我们将演示如何使用几何图像分析功能来计算多模光纤耦合效率。
使用几何图像分析计算多模光纤耦合效率
下载并打开本文示例文件。该系统模拟的是将光耦合到纤芯半径为0.1 mm、数值孔径为0.2的多模光纤中。现在,我们先暂时忽略空气与玻璃分界面上(包括光纤上的分界面)产生的菲涅尔(反射)损耗。

