新浪博客

mothur使用说明

2012-05-28 16:37阅读:

在Ubuntu中安装Mothur

(分享于http://www.yelinsky.com/blog/archives/390.html)


==================================================================================================
1:软件首页为http://www.mothur.org/
2:软件下载地址:http://www.mothur.org/wiki/Download_mothur
3:比对(http://www.mothur.org/wiki/Align.seqs
3-1:选取参考序列(http://www.mothur.org/wiki/Alignment_database
目前可供选择的数据库为两个:(1)SILVA(2)GreenGenes
4:该软件已经被广泛使用,如果使用该软件,可以参考这些例子。(http://www.mothur.org/wiki/Analysis_examples),你可以根据你自己的数据类型选择自己合适的数据。
==================================================================================================
1
Home page: http://www.mothur.org/
2:Analysis pipeline:
2-1: chimera.uchime - identify potentially chimeric sequences (去除嵌合体)
command:chimera.uchime(fasta=out.fasta, reference=silva.gold.align)
outputout.uchime.chimera; out.uchime.accnos
2-2: unique.seqs - identify the unique sequences in a collection and generate a names file
command: unique.seqs(fasta=out.fasta) output:out.unique.fasta; out.names
2-3: align.seqs - align sequences against a reference alignment
alignment databases: http://www.mothur.org/wiki/Alignment_database
command: align.seqs(fasta=out.unique.fasta, reference=silva.eukarya.fasta, processors=2)
output: out.unique.align; ###.unique. align.report; ### .unique.flip.accnos
2-4: screen.seqs - remove sequences that don't satisfy criteria
command:screen.seqs(fasta=out.unique.align, maxambig=2, minlength=100, maxlength=400,name=out.names)
summary.seqs(fasta=out.unique.good.align,name=out.good.names)
output: out.unique.good.align; out.unique.bad.accnos; out.good.names
2-5: filter.seqs - filter positions out of an alignment
command: filter.seqs(fasta=out.unique.good.align,trump=.,vertical=T)
output: out.unique.good.filter.fasta;out.filter
2-6: dist.seqs - generate a pairwise distance matrix
command: dist.seqs(fasta=out.unique.good.filter.fasta, output=lt, processors=2)
output: out.unique.good.filter.phylip.dist
2-7:OTU-based Analyses:
cluster(phylip=out.unique.good.filter.phylip.dist, cutoff=0.10,name=out.names)
output:###.an.shared, ###.an.B.rabund; ###.an.list
2-8: rarefaction.single- generate intra-sample rarefaction curves(稀疏曲线)
command:rarefaction.single(list=out.unique.good.filter.phylip.an.list)
R_command:data <- read.table('out.unique.good.filter.phylip.an.rarefaction', header=TRUE)
attach(data)
plot(numsampled, unique, type='b', xlab='fungi sequences sampled', ylab='Observed OTUs', col='blue')
2-9Phylotype analysis
Command:
classify.seqs(fasta=out.fasta, template=nogap.eukarya.fasta, taxonomy=silva.eukarya.silva.tax, iters=1000, cutoff=60)
output: ###.silva.taxonomy###.silva.tax.summary
classify.otu(taxonomy=out.silva.taxonomy, list=out.unique.good.filter.phylip.an.list,name=out.names)
#################################################################################################################
operational taxonomic units (OTU)
operational taxonomic units (OTUs)在微生物的免培养分析中经常用到,通过提取样品的总基因组DNA,利用16S rRNA或ITS的通用引物进行PCR扩增,通过测序以后就可以分析样品中的微生物多样性,那怎么区分这些不同的序列呢,这个时候就需要引入operational taxonomic units,一般情况下,如果序列之间,比如不同的 16S rRNA序列的相似性大于98%就可以把它定义为一个OTU,每个OTU对应于一个不同的16S rRNA序列,也就是每个OTU对应于一个不同的细菌(微生物)种。通过OTU分析,就可以知道样品中的微生物多样性和不同微生物的丰度。
bin.seqs - identify the OTU that each sequence belongs to
mothur > bin.seqs(list=98_sq_phylip_amazon.an.list, fasta=amazon.fasta)
这个list是来自2-7之后。
原有的软件:

Introducing DOTUR, a Computer Program for Defining Operational Taxonomic Units and Estimating Species Richness

  1. Jo Handelsman
  1. 已经被现在的取代。

我的更多文章

下载客户端阅读体验更佳

APP专享