音速,横波,纵波,音叉,多普勒效应
2011-11-02 21:28阅读:
音速
音速,也叫声速,声速是介质中微弱压强扰动的传播速度,其大小因媒质的性质和状态而异。空气中的音速在1个标准大气压和15℃的条件下约为340米/秒。1947年10月4日,人类首次突破音速。
{
论:(0.34*60*60)\2=1224里,也就是每小时612公里}
简介
声音的传播
音速,也叫声速,指声波在媒质(介质)中传播的速度。其大小因媒质的性质和状态而异。声速顾名思义即是声音的速度,唯声音系以波的形式传播,与一般所理解物体的速度是不同的,所以与其将音速称为
声音
的速度,倒不如将音速视为波传递速度的指标,音速与传递介质的材质状况有绝对关系,而与发声者本身的速度无关,而发声者与听者间若有相对运动关系,就形成了都卜勒效应;也由此观点,穿/超音速时的诸多物理现象,其实与声音无关,而是压缩波密集累积所产生的物理现象。
传播速度
音速也叫“声速”,指声波在媒质(介质)中传播的速度。其大小因媒质的性质和状态而异。一般说来,音速的数值在固体中比在液体中大,在液体中又比在气体中大。空气中的音速,在标准大气压条件下约为340米/秒,或1224公里/小时。音速的大小还随大气温度的变化而变化,在对流层中,高度升高时,气温下降,音速减小。在平流层下部,气温不随高度而变,音速也不变,为295.2米/秒。空气流动的规律和飞机的空气动力特性,在飞行速度小于音速和大于音速的情况下,具有质的差别,因此,研究
航空器在大气中的运动,音速是一个非常重要的基准值。
喷气式飞机都用
马赫数
Ma来表示速度, 而不用对地速度. 这是因为物体在空气中飞行时, 前端会压缩空气形成波动,
这个波动是以音速传播的(因为声波也是波动的一种). 如果物体的飞行速度超过音速, 那么这些波动无法从前端传播, 而在物体前端堆积,
压力增大, 最终形成
激波. 激波是超音速飞行的主要阻力源.
物体飞行速度一旦超过音速, 必然产生激波. 激波会极大地增加飞行阻力, 影响到整个
飞行状态以及燃料的消耗. 在不同的空气环境中, 尽管飞行器的 Ma数相同, 但他们的对地速度是不相等的;
不过, 他们受到的阻力却大致相当. 所以, 飞行器都是用当地的音速, 来衡量当前速度的.
影响因素
音速
从声源发出的声波以一定的速度向周围传播,意味着声波的能量也以一定的速度向周围传播。目前所知,
声波能够在所有物质(除真空外)中传播。其传播速度由传声介质的某些物理性质,主要是
力学性质所决定。例如,音速与介质的密度和弹性性质有关,因此也随介质的温度、压强等状态参量而改变。气体中音速每秒约数百米,随温度升高而增大,0℃时空气中音速为331.4米/秒,15℃时为340米/秒,温度每升高1℃,音速约增加0.6米/秒。通常,固体介质中音速最大,液体介质中的音速较小,气体介质中的音速最小。另外,不均匀介质中的音速处处不等。各向异性介质中的音速随传播方向而异。
在有些情况下音速还与声波本身的振幅、
频率、振动方式(纵波声速、横波声速等)有关。如果传播介质的尺寸不够大,则其边界对音速也有影响。因此为了使音速的量值确切地表征传声介质的声学特征,不受其几何形状的影响,一般须规定传声介质的尺寸足够大(理论上为无限大)情况下的声波传播速度。有时为了实用上的方便,也列出某些特殊情况下的音速,如固体细棒中的音速。
音速 - 不同介质
真空 0m/s(也就是不能传播)
空气(15℃)340m/s
空气(25℃)346m/s
软木 500m/s
煤油(25℃)1324m/s
蒸馏水(25℃)1497m/s 海水(25℃)1531m/s
铜(棒)3750m/s
大理石 3810m/s
铝(棒)5000m/s
铁(棒)5200m/s
水 (常温)1500m/s
相关事例
音叉音速
以音叉为例,敲打音叉之后,
音叉产生振动,
振动中的音叉会来回推撞周围的空气,使得空气的压力时高时低,而使得空气分子产生密部和疏部的变化,并藉由分子间的碰撞运动向外扩散出去,音叉的声波也就向外传出了。声波在传递时,空气分子的振动方向和波的传递方向是相同的,把这种波叫做“纵波”。
像空气这种可以传递声波的物质,把它们叫做“介质”。声波一定要有介质才能传递出去,如果真空状态,声波没有了传播的媒质,就无法听到声音了。
除了空气可以传递声音之外,
液体(像水)、固体(像木材、玻璃、钢铁)等等,也都是声音的介质,而且因为液体、固体的分子排列得较紧密,因此传递声音的速度都比空气来得快。声音在水中的速度大约是在空气中的五倍,在钢中则比空气中快上将近二十倍。
日常生活中,声音大都藉由空气传播,历史上第一次测出空气中的声速,是在公元1708年的时候。当时一位英国人德罕姆站在一座教堂的顶楼,注视着十九公里外正在发射的大炮,他计算大炮发出闪光后到听见轰隆声之间的时间,经过多次测量后取平均值,得到与现在相当接近的声速数据在20℃时,每秒可跑343米。
横波
横波也称“
凹凸波”。质点的振动方向与波的传播方向垂直,这样的波称为“横波”。横波是波动的一种(波动分为横波和
纵波)。横波的特点是
质点的振动方向与
波的传播方向相互垂直。在横波中
波长通常是指相邻两个波峰或波谷之间的距离。
电磁波、
光波就是横波。
横波
横波在传播过程中,凡是波传到的地方,每个质点都在自己的平衡位置附近振动。由于波以有限的速度向前传播,所以后开始振动的质点比先开始振动的质点在步调上要落后一段时间,即存在一个位相差。横波的传播,在外表上形成一种“波浪起伏”,即形成波峰和波谷,传播的只是振动状态,媒质的质点并不随波前进。实质上,横波的传播是由于媒质内部发生剪切变形(即是媒质各层之间发生平行于这些层的相对移动)并产生使体元恢复原状的剪切弹性力而实现的。否则一个体元的振动,不会牵动附近体元也动起来,离开平衡位置的体元,也不会在弹性力的作用下回到平衡位置。
固体有切变弹性,所以在固体中能传播横波,
液体和
气体没有切变弹性,因此只能传播
纵波,而不能传播
横波。
液体表面形成的水波是由于重力和表面张力作用而形成的,表面每个质点振动的方向又不和波的传播方向保持垂直,严格说,在水表面的水波并不属于横波的范畴,因为水波与地震波都是既有横波又有纵波的复杂类型的机械波。
纵波
纵波
纵波亦称“疏密波”。振动方向与波的传播方向一致的波称为纵波。
纵波的传播过程是沿着波前进的方向出现疏、密不同的部分。实质上,纵波的传播是由于媒质中各体元发生压缩和拉伸的变形,并产生使体元恢复原状的纵向弹性力而实现的。因此纵波只能在拉伸压缩的弹性的媒质中传播,一般的固体、液体、气体都具有拉伸和压缩弹性,所以它们都能传递纵波。
声波在空气中传播时,由于空气微粒的振动方向与波的传播方向一致所以是纵波。
-
音叉
音叉由弹性金属(多为钢)制成,末有一柄,两端分叉,型如拉丁字母‘U’。音叉拥有一固定的共振频率,受到敲击时则震动,在等待初始时的泛音列过去后,音叉发出的音响就具有固定的音高。一个音叉所发出的音高由它分叉部分的长度决定。
简介
音叉
音叉(tuning fork)是呈“Y”形的钢质或
铝合金发声器,各种音叉可因其
质量和叉臂长短、粗细不同而在振动时发出不同频率的纯音。音叉检查在鉴别耳聋性质——传音性聋或感音性聋方面,是一种简便可靠的常用诊查方法。
用音叉取“标准音”是钢琴调律过程中十分重要的环节之一。它的重要性在于关系到一台
钢琴各键音处在什么音高位置上。
在教学中,音叉可以用来演示共振。
敲击音叉,采集
声波波形图。试验发现:轻敲音叉,音叉振幅小,
波形图的幅度小,这时音叉发出的声音也小;重敲音叉,音叉的振幅大,波形图的幅度大,这时音叉发出的声音也大。说明:响度跟音叉振动的振幅有关。
振幅越大,
响度越大;振幅越小,响度越小。