Fluent内部计算采用的都是相对压强。在Define——Operating Conditions…中,所示的Operating
Pressure是操作压强。默认的操作压强为一个大气压101325Pa.
下面叙述一下笔者对采用Operating Pressure原因的理解。
在计算低马赫数的流动中,流体流速相对声速较低,这样在流动过程中产生的压力降或者说压力变化相对于流体的静压来讲是很小的。因为在流动中有压力相对变化和马赫数的平方在一个数量级。笔者通常这样理解压力变化的缘由:粘性力、体积力、电磁力等有些力是无法避免的,这些力在会改变流动流体的动量和能量。在流动过程中,流体又遵循能量守恒和动量守恒。速度的变化还和当地的流动截面有关,因为流动还要求质量守恒。速度和压力是不可分割的。压强的存在时刻使得能量和动量守恒。笔者认为压强的存在是一种调配功能,它体现的是一个因变量的作用,用以平衡各项,使得流动遵守三大定律。但流动同时是耦合的,压强的作用当然不仅仅是这些。温度的改变、速度梯度的变化还直接影响密度、粘性和粘性应力,这样所有的力都和速度产生了关联。力和能量是无法分割的,和动量更是有直接关系。再表前题,压力的相对变化和马赫数的平方成正比,当Ma<<1时,
ΔP/P∝Ma²<<1,这样在求解方程的时候如果所有节点的压力仍然采用P就会产生相当大的舍入误差。因此Fluent特地在Operating Conditions…面板设置了Operating Pressure选项,如此在内部的计算过程中,所有节点的压力将首先减去该值(默认为101325Pa)然后进行计算。熟悉控制方程的读者都知道,压力在所有方程中都是以相对量或者变化量出现的,故此这样处理并不是更改方程,而是在方程的两端都减去了一个常数值,使得所解的压力变化和在方程中的压力值处在一个数量级,这样,在迭代的过程中舍入误差将会大大减小。
当选用的计算流体为可压缩流体(ideal gas等)时,会出现如下警示:
Warning: Velocity inlet boundary conditions are not appropriate for compressible flow problems. Pleas
下面叙述一下笔者对采用Operating Pressure原因的理解。
在计算低马赫数的流动中,流体流速相对声速较低,这样在流动过程中产生的压力降或者说压力变化相对于流体的静压来讲是很小的。因为在流动中有压力相对变化和马赫数的平方在一个数量级。笔者通常这样理解压力变化的缘由:粘性力、体积力、电磁力等有些力是无法避免的,这些力在会改变流动流体的动量和能量。在流动过程中,流体又遵循能量守恒和动量守恒。速度的变化还和当地的流动截面有关,因为流动还要求质量守恒。速度和压力是不可分割的。压强的存在时刻使得能量和动量守恒。笔者认为压强的存在是一种调配功能,它体现的是一个因变量的作用,用以平衡各项,使得流动遵守三大定律。但流动同时是耦合的,压强的作用当然不仅仅是这些。温度的改变、速度梯度的变化还直接影响密度、粘性和粘性应力,这样所有的力都和速度产生了关联。力和能量是无法分割的,和动量更是有直接关系。再表前题,压力的相对变化和马赫数的平方成正比,当Ma<<1时,
ΔP/P∝Ma²<<1,这样在求解方程的时候如果所有节点的压力仍然采用P就会产生相当大的舍入误差。因此Fluent特地在Operating Conditions…面板设置了Operating Pressure选项,如此在内部的计算过程中,所有节点的压力将首先减去该值(默认为101325Pa)然后进行计算。熟悉控制方程的读者都知道,压力在所有方程中都是以相对量或者变化量出现的,故此这样处理并不是更改方程,而是在方程的两端都减去了一个常数值,使得所解的压力变化和在方程中的压力值处在一个数量级,这样,在迭代的过程中舍入误差将会大大减小。
当选用的计算流体为可压缩流体(ideal gas等)时,会出现如下警示:
Warning: Velocity inlet boundary conditions are not appropriate for compressible flow problems. Pleas
