1)收敛判据的选择
结构弛豫的判据一般有两种选择:能量和力。这两者是相关的,理想情况下,能量收敛到基态,力也应该是收敛到平衡态的。但是数值计算过程上的差异导致以二者为判据的收敛速度差异很大,力收敛速度绝大部分情况下都慢于能量收敛速度。这是因为力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。
到底是以能量为收敛判据,还是以力为收敛判据呢?关心能量的人,觉得以能量为判据就够了;关心力相关量的人,没有选择,只能用力作为收敛标准。对于超胞体系的结构优化,文献大部分采用Gamma点做单点优化。这个时候即使采用力为判据(EDIFFG=-0.02),在做静态自洽计算能量的时候,会发现,原本已经收敛得好好的力在不少敏感位置还是超过了结构优化时设置的标准。这个时候,是不是该怀疑对超胞仅做Gamma点结构优化的合理性呢?是不是要提高K点密度再做结构优化呢
在我看来,这取决于所研究的问题的复杂程度。我们的计算从原胞开始,到超胞,到掺杂结构,到吸附结构,到反应和解离。每一步都在增加复杂程度。结构优化终点与初始结构是有关的,如果遇到对初始结构敏感的优化,那就头疼了。而且,还要注意到,催化反应不仅与原子本身及其化学环境有关,还会与几何构型有关。气固催化反应过程是电子的传递过程,也是分子拆分与重新组合的过程。如果优化终点的构型不同,可能会导致化学反应的途径上的差异。仅从这一点来看,第一性原理计算的复杂性,结果上的合理性判断都不是手册上写的那么简单。
对于涉及构型敏感性的结构优化过程,我觉得,以力作为收敛判据更合适。而且需要在Gamma点优化的基础上再提高K点密度继续优化,直到静态自洽计算时力也是达到收敛标准的。
(2)结构优化参数设置
结构优化,或者叫弛豫,是后续计算的基础。其收敛性受两个主要因素影响:初始结构的合理性和弛豫参数的设置。
初始结构
初始结构包括原子堆积方式,和自旋、磁性、电荷、偶极等具有明确物理意义的模型相关参数。比如掺杂,表面吸附,空位等结构,初始原子的距离,角度等的设置需要有一定的经验积累。DFT计算短程强相互作用(相对于范德华力),如果初始距离设置过远(如超过4埃),则明显导致收敛很慢甚至得到不合理的结果。
比较好的设置方法可以
结构弛豫的判据一般有两种选择:能量和力。这两者是相关的,理想情况下,能量收敛到基态,力也应该是收敛到平衡态的。但是数值计算过程上的差异导致以二者为判据的收敛速度差异很大,力收敛速度绝大部分情况下都慢于能量收敛速度。这是因为力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。
到底是以能量为收敛判据,还是以力为收敛判据呢?关心能量的人,觉得以能量为判据就够了;关心力相关量的人,没有选择,只能用力作为收敛标准。对于超胞体系的结构优化,文献大部分采用Gamma点做单点优化。这个时候即使采用力为判据(EDIFFG=-0.02),在做静态自洽计算能量的时候,会发现,原本已经收敛得好好的力在不少敏感位置还是超过了结构优化时设置的标准。这个时候,是不是该怀疑对超胞仅做Gamma点结构优化的合理性呢?是不是要提高K点密度再做结构优化呢
在我看来,这取决于所研究的问题的复杂程度。我们的计算从原胞开始,到超胞,到掺杂结构,到吸附结构,到反应和解离。每一步都在增加复杂程度。结构优化终点与初始结构是有关的,如果遇到对初始结构敏感的优化,那就头疼了。而且,还要注意到,催化反应不仅与原子本身及其化学环境有关,还会与几何构型有关。气固催化反应过程是电子的传递过程,也是分子拆分与重新组合的过程。如果优化终点的构型不同,可能会导致化学反应的途径上的差异。仅从这一点来看,第一性原理计算的复杂性,结果上的合理性判断都不是手册上写的那么简单。
对于涉及构型敏感性的结构优化过程,我觉得,以力作为收敛判据更合适。而且需要在Gamma点优化的基础上再提高K点密度继续优化,直到静态自洽计算时力也是达到收敛标准的。
(2)结构优化参数设置
结构优化,或者叫弛豫,是后续计算的基础。其收敛性受两个主要因素影响:初始结构的合理性和弛豫参数的设置。
初始结构
初始结构包括原子堆积方式,和自旋、磁性、电荷、偶极等具有明确物理意义的模型相关参数。比如掺杂,表面吸附,空位等结构,初始原子的距离,角度等的设置需要有一定的经验积累。DFT计算短程强相互作用(相对于范德华力),如果初始距离设置过远(如超过4埃),则明显导致收敛很慢甚至得到不合理的结果。
比较好的设置方法可以
