[转载]俞正强老师《鸡兔同笼》听课笔记
2015-06-26 16:48阅读:
俞正强老师《鸡兔同笼》听课笔记
课前谈话:同学们好,我来自浙江,知道浙江在哪里吗?
一、枚举算法:
1、齐读问题:鸡兔有头7个,有脚下22只,问鸡几只,兔几只?
2、回忆方法:
会做吗?(会做)
这种题你们是什么时候会做的?
生1:四年级
生2:四年级
师指一组:开火车说,结果三四年级都有。
师:有没有二年级就会做的?
生3举手。
师指生3、生4上台分别板演出二年级、四年级的方法,并问其他学生“有没有一年级就会的?”“有没有发育得比较迟,5年级才会做的?”学生答:没有。
3、于是老师在生3、生4板演过程中,让其他学生自己动笔尝试。师在其间再找学生将不同的方法板演于黑板。
(其中生3写出的是下面的方法1,实际不是二年级就能学会的)
(而生4写不出来,师再请生5写,写出的是下面的方法2)
(俞老师巡视过程中发现并要求板演于黑板上的还有二元一次方程解法、。
评:
一开始有点卡。乍一上来,就马上让学生讲,思绪还没理清的情况下,俞老师期待的一年级的方法(画图)和高年级的方法(方程)没能出现,而板演的两个学生写错或是想不起来了也是很正常的。俞老师于是调整策略,让全班学生动笔尝试,有了一个缓冲时间,学生的方法便多了起来,再从中找出其它的方法一一让其写在黑板上。
俞老师这样的设计是否是有意的?或许是想让学生在最短的时间内用最简单的方法去解决,或者说用最快的速度探知学生的思维起点。并在此基础上激发学生寻求多样化的算法,正所谓不悱不启,不愤不发。
另外,学生都没有想到画图法,这似乎与我们的奥数教法有关,我们很少让学生自己去思考,缺乏对学生原发性思维的支持与引导。
二、理解算法:
(一)方法1:
4&tim
es;7=28(假设都是兔,则有28支脚)
28-22=6(多出了6支脚)
师问算式的意义,生回答。
师再帮其补充算式:6÷2=3 (鸡看成兔,一只就多2支脚,共多了6支脚,说明有3支鸡)
7-3=4(总共7只,其中有3只是鸡,则兔为4只)
(二)方法2
头数 鸡 兔
脚
7
7 0
14
7
6 1
16
7 ……
…… ……
7
3 4
22
师:你这是什么方法?这一列是?(鸡的头数)这一列是?(兔的头数)14怎么来的?(全都鸡的话,脚就只有14支,还相差很大,就让鸡少掉一只,就这样少下去)
省略号是什么意思?
你怎么这么准就变成3了呢?(估计的)
另一生发现规律:兔多出1只,脚就多2只。一共要多8只才够,那么就要少4只鸡。
师:总只数只有7只,鸡少掉一只,兔就会多一只。鸡少掉两只,兔就会多两只。鸡少掉三只,兔就会少掉3只。…………(师解释总只数-鸡只数=兔只数。)
评:
1、
学生的基础非常好,俞老师只是做了一些引导学生解释算法的工作。
2、
俞老师在学生解释完之后,强调了“鸡少掉一只,兔就会多一只”。开始我很费解,为什么学生都已经达到“兔多出1只,脚就多2只。”的层次上,他却拾级而下,去寻找更低层次的规律,这好像不太符合数学课思维培养的逻辑。后来才知道,此处俞老师已在为后面的沟通算法埋下关健的伏笔。
(三)方法3:
解:设x只鸡,y只兔。
方程组:2x+4y=22
X+y=7
-2x-2y=-14
2y=22-14
2y=8
Y=4
X=3
师:什么方法?(二元一次方程)什么时候会的?会的请站起来。(大半)
有生提出可以用一元一次方程解,师指生上台写出,即方法4。
(四)方法4:
解:设鸡为x只,兔(7-x)只
2x+4×(7-x)=22
2x+28-4x=22
2x-4x=22-28
-2x=-6
X=3
7-x=4
评:二元一次方程,六年级学生已会了大半。这意味着什么?如何处理方法3?俞老师适时借其他学生的补充,避开了这一问题。
后来周玉仁教授认为学生的问题意识不够强,出现了负数的情况怎么没有提问?
师追问:还有其它方法吗?
生1:估计没有。
生2:应该还有。
生3:我觉得可以假设都是鸡。(指方法1是假设都是兔)
师:我上次上这节课的时候,一年级小朋友怎么解的,你知道吗?
生:画图。
(五)方法5:
生画○ ○ ○ ○ ○ ○ ○ 。师问这是什么?(头)
生再画脚,都当兔画。师问这是什么头?(兔头)
生述方法:28-22=6 多出了6条腿,所以擦掉6条腿。
再6÷2=3。下面的学生发笑,提醒该生除法一年级没学过。该生改写成:6=2+2+2
师帮生理清思路,依次从右边的三只兔子的脚中分别擦掉2支脚,得下图:
评:
我们的数学教学有些时候是在把简单问题复杂化,以至于学生到了六年级,思维也已经习惯于复杂化。如此简单的画图过程还是想得这么复杂,幸好俞老师及时收回来,擦给学生看,学生恍然大悟。
三、沟通算法:
1、有一年级的方法、二年级的方法、四五年级的方法还有方程法,到六年级为止,我们的知识支持哪几种方法?
2、有没有一种惊异的感觉?哪一种方法你觉得最难想到?
3、解决这一类问题,你喜欢哪一种方法?哪一种最简洁?
生1:假设法最好。
师:理由
生1:方程太麻烦。列表法要不断地猜测。画图的方法考试的时候不行,老师会判错的。
师:上不了大雅之堂。可还是知道鸡3只、兔4只啊。
生1:太幼稚了。
生2:我认为方程法不错。而画图方法更好一些。
生3附和:画图的方法其实可以归结为一种算术的方法
师:很有想法,请你再重复一遍。
生3讲不清楚,师让其上台写出来。
生:(22-7*2)=8 8/2=4 7-4=3
师:是不是假设法?引生讨论。让生3画出。
生4:其实这种方法还是一样的,只是出发点不一样。假设都是鸡。
生5:它这个方法还是没有用纯算术的方法,还是要用到画图的方法。是算术的方法和画图的方法交织在一起的。
师:其实画图法和方法1是一种方法,都是假设的方法。
4、还有哪两种方法是同一种方法?
(1)列表法也是假设法
(2)方程也是假设法
(3)都是用假设法。
(4)一边是假设为具体的数量,一边是假设为表示未知数的字母
看来这些方法归根结底都是假设法,只不过有的是穿裤子的,有的是穿裙子的。
从假设具体数量到假设未知数量,接点在哪里?学生无法回答。
师利用列表法延伸到方程法:
如果鸡为7只,那么兔为7-7=0只;鸡为6只,那么兔为7-6=1只;如果鸡为x只,那么兔为?(7-x只)x只鸡有几只脚?(2x)
兔呢?4*(7-x) 合在一起应该有几支脚?(22支)
头数 鸡 兔 脚
7 7 0 14
7 6 1 16
7 …… …… ……
2X + 4×(7-X) =22
再一次引导学生观察所有方法,都是用什么方法?假设。为什么都要用假设?假设是什么?假设什么用?你肯定回答不出来。
评:
听过很多《鸡兔同笼》的课,上奥数课时也教过,大家一般也能注意到算法多样化,但一般是到罗列算法为止,最多也就是引导学生发现都是假设法。俞老师能将这些算法沟通起来,可见深厚功力。
四、课堂总结
一年级的会用画的方法解决,二三年级的可以列表法解决,四五年级可以用假设法解决,六年级可以用方程解决。你有没有什么想法?
师让一组开火车,讲不出来可以说没有。
1、 没有
2、 原来简单的方法,其实就是后来的思路。
3、 年龄增长,会有新的方法。
4、 一年级以为就这种方法,到六年级你就会有很多方法。比如说1+1=2,二年级就可以1*2=2
。师表扬其思考方法很好。
5、 更加简便,所以要不断学习。
6、 低年级是高年级的基础,高年级的方法是升级版。
7、 人喜欢把事情变得麻烦,其实有的时候很简单。
8、
打一个比方,条条大路通罗马。师:解释一下。生:任何一个年级都有解决的方法,然后,不同的人用不同的方法,要选择合适的方法。
所以,以后碰到没做过的题目,不要慌。
评:真是服了俞老师,数学课上到最后有点像悠闲的谈话节目,从开始前的枚举算法到理解算法,接着沟通算法,最后是在欣赏数学。上升到了哲学思考的层面上。
五、作业:
1、从小学六个年级的书里想办法列举一个类似的材料来。
2、走的时候和我拍拍