To learn, to share, to debate,
then comes progress.
该博文整理自课程研究报告,详细内容可参见:
https://wenku.baidu.com/view/9c293150c950ad02de80d4d8 d15abe2348
2f03f3
1.算法背景
经典的滤波算法包括维纳滤波,卡尔曼滤波,这些滤波算法都需要对输入信号的相关系数,噪声功率等参数进行估计,而实际中很难实现这些参数的准确估计,而这些参数的准确估计直接影响到滤波器的滤波效果。另一方面,这两类滤波器一般设计完成,参数便不可改变,实际应用中,希望滤波器的参数能够随着输入信号的变化而改变,以取得较好的实时性处理效果。为了弥补传统滤波算法的不足,满足信号处理的要求,又发展了自适应滤波。
2.算法基本原理
自适应滤波与维纳滤波,卡尔曼滤波最大的区别在于,自适应滤波在输出与滤波系统之间存在有反馈通道,根据某一时刻滤波器的输出与期望信号的误差调整滤波器的系数,从而实现滤波器系数的动态调整,实现最优滤波。
(1)信号模型
自适应滤波的目的仍然是从观测信号中提取真实准确的期望信号,因此涉及到的信号有:
期望信号 d(n)
该博文整理自课程研究报告,详细内容可参见:
https://wenku.baidu.com/view/9c293150c950ad02de80d4d8
1.算法背景
经典的滤波算法包括维纳滤波,卡尔曼滤波,这些滤波算法都需要对输入信号的相关系数,噪声功率等参数进行估计,而实际中很难实现这些参数的准确估计,而这些参数的准确估计直接影响到滤波器的滤波效果。另一方面,这两类滤波器一般设计完成,参数便不可改变,实际应用中,希望滤波器的参数能够随着输入信号的变化而改变,以取得较好的实时性处理效果。为了弥补传统滤波算法的不足,满足信号处理的要求,又发展了自适应滤波。
2.算法基本原理
自适应滤波与维纳滤波,卡尔曼滤波最大的区别在于,自适应滤波在输出与滤波系统之间存在有反馈通道,根据某一时刻滤波器的输出与期望信号的误差调整滤波器的系数,从而实现滤波器系数的动态调整,实现最优滤波。
(1)信号模型
自适应滤波的目的仍然是从观测信号中提取真实准确的期望信号,因此涉及到的信号有:
期望信号 d(n)
