潮汐与潮流
2015-01-05 10:45阅读:
潮汐与潮流
潮汐(Tide)是海面周期性的升降运动。与潮汐现象同时发生的还有海水周期性的水平流动,即潮流(Tidal
Stream)。
潮汐与渔业、盐业、港口建筑、以及海水动力利用有着十分密切的关系。潮汐与航海的关系也非常重要,将直接影响船舶的航行计划的实施和航海安全,如需要通过浅水区,须预先依据潮汐资料计算出当地潮高、潮时,并正确调整吃水差;为了保证船舶安全地航行在计划航线上,须随时掌握当的潮汐与潮流资料,观测船位,调整航向。即使是在港内,也不容忽视潮汐、潮流对船舶安全的影响。在沿岸航行中,船长的航行命令、公司的航行规章制度、国际性机构对航行值班驾驶员的指导性文件中,都将掌握当时和未来的潮汐和潮流列为确保航行安全的驾驶台工作的重要内容。
潮汐学有着丰富的内容,本章仅从航海应用实际出发,阐述潮汐的基本成因、潮汐术语、潮流的计算方法等内容。
§13—1 潮汐的基本成因和潮汐术语
一、
潮汐的成因
海水的涨落现象是由诸多复杂因素决定的,经研究表明,潮汐产生的原动力,是天
体的引潮力,即天体的引力、地球与天体相对运动所需的惯性离心力的向量和。其
中最主要的是月球的引潮力,其次是太阳的引潮力。
本章仅从航海实际需要出发,扼要地利用平衡潮理论(静力学理论)分析潮汐的基
本成因,并对调和常数分析法作简单扼要的介绍。
平衡潮理论是牛顿创立的,所谓平衡潮是指海水在引潮力和重力作用下,达到平衡
时的潮汐。
为了使问题简化,作以下两个假设:
1、 整个地球被等深的海水所覆盖,所有自然地理因素对潮汐不起作用;
2、 海水没有摩擦力、惯性力,外力使海水在任何时候都处于平衡状态。
下面以月引潮力为例来分析潮汐的成因:
㈠
月球的引力
根据万有引力定律,有:
式中:
mM —— 月球质量;
mE
—— 地球质量;
R —— 地月中心距离;
k —— 万有引力系数。
而地球表面上至月球中心距离为
X的单位质点P所受的引力为:

所以:(如图5-1-1所示)
月球引力的方向:均指向月心;
大小:与天体的距离的平方成反比。
㈡
惯性离心力
月球绕地球公转,严格地说,应是月心绕月、地公共质心旋转。其周期约为27.3
日。由于地球质量远比月球质量大,经计算,公共质心位于月心与地心连线上,且
距地心0.73
R(
R为地球半径)处。地球绕公共质心平动时,产生惯性离心力。

如图5-1-2所示:
地球表面上各点的惯性离心力为:
方向:均背向月球,且彼此平行;
大小:均相等。
㈢
月引潮力和月潮椭圆体
如图5-1-4所示:
月引潮力即为月球的引力和月、地公转惯性离心力的矢量和。
月引潮力使地面海水涌向向月和背月的地方,形成高潮;
而在与向月和背月经差相差90o处,海水因受引潮力的作用而流走,形成低潮,从
而形成一个长轴指向月球的月潮椭圆体(如图5-1-5所示):
对地球上某点A而言,P为地极,A 1 , A 2 ,A 3 , A4分别表示地球表面上任意一
点A随着地球自转中的四个位置。
A 1 点,月球在该点的上中天,该点海面水位升到最高,产生该地当日第一次高潮;
当地球自转到A 2点时,海面水位下降到最底,产生该日当地第一次低潮;
当地球自转到A 3点时,即月下中天,海面水位再次升到最高,即产生该地当日第
二次高潮;
当地球自转到A 4点时, 海面水位再次下降到最底,则发生该地当日第二次低潮。
月球连续两次上(下)中天的时间间隔称为一个太阴日,约为24 h 50 min。
相邻两个高潮(低潮)的时间间隔(约为12 h 25 min.),称为一个潮汐周期。
可见,我们所讨论的潮汐是以半个太阴日为周期的,故称为半日潮(semi-diurnal
tide)。
二、
潮汐不等
1、 潮汐的周日不等(diurnal inequality of tide)
上面我们所讨论的是月赤纬为零时的潮汐现象,即在一个太阴日中,有两个几乎相
等的高潮和低潮,且相邻高、低潮时间间隔也几乎相等,这种潮汐现象称为赤道潮
或分点潮。此时,几乎没有日潮不等现象。

如图5-1-6所示:
但当月赤纬不等于零,尤其是较大时,
月潮椭圆体长轴指向月球,与赤道面成
一交角(即当时的月赤纬)。
这时,在一个太阴日里的两个高潮(低
潮)的高度不再基本相等,而有明显差
异,并且,相邻的高、低潮时间间隔也不再一致,这种现象称为潮汐的周日不等。
月赤纬越大,这种现象越明显。当月球
在月回归线时(月赤纬最大),日潮不等现象最大,这时的潮汐称为回归潮。
2、 潮汐的半月不等
太阳也会使地面海水在太阳引潮力的作用下,形成日潮椭圆体:
其长轴指向太阳,周期为一个太阳日(24h),其间出现两高两低,但较月引潮力小
(2.17)倍。
由于月、日、地球在空间的相对位置周期性地变化,使得月、日潮椭圆体相互叠加,从而产生了潮汐的半月不等现象。
如图5-1-7所示:
设:月、日的赤纬均等于零,当月球处在新月(朔)或满月(望)时,月、日潮椭
圆体的长轴在同一个子午圈平面内,即月、日潮椭圆体的长轴方向一致,互相叠加,
出现高潮最高、低潮最低的现象,称为大潮(spring
tide ,ST)。

如图5-1-8所示:
当月球处在上弦(农历初七、八)或下
弦(农历二十二、二十三)时,月、日
潮椭圆体的长轴方向相差90o ,引潮力
互相抵消,出现了高潮最低、低潮最高
的现象,称为小潮(neap tide NT)。
可见,从朔、望到两弦,再到朔、望,
潮差在不断地变化。
即从新月 → 上弦,潮差由大 → 小;
上弦 → 满月,潮差由小 → 大;
满月 → 下弦,潮差由大 → 小;
下弦 → 新月,潮差由小 → 大。
如此反复。
3、 潮汐的视差不等
月球是沿椭圆轨道绕地球转动的,地球在椭圆轨道的一个焦点上。
由于月、日、地球三者相对距离发生周期性的变化而产生的潮汐不等现象叫潮汐的
视差不等。
每年元月三日前后,地球离太阳最近,此点为近日点,其引潮力较大;
每年七月四日前后,地球离太阳最远,此点为远日点,其引潮力较小。
其周期为一个回归年,约365.24日。
三、
潮汐的调和分析
1、 为什么要进行潮汐的调和分析
上述对潮汐的成因、潮汐不等问题的讨论,都是根据牛顿的潮汐静力学理论,在理
想的假设条件下进行的。事实上,高潮并不发生在月上、下中天时,而是滞后一个
高潮间隙;
大潮也不发生在朔、望日,而是滞后1—3天(潮龄)。各地的潮差不等,甚至相差
悬殊;相距很近的两个地区,却发生性质不同的潮汐现象。用静力学的理论是无法
解释这些现象的。
2、 什么是潮汐的调和分析
综合运用潮汐静力学的计算和潮汐动力学的分析来预报潮汐的方法,称为潮汐的调
和分析。
四、
潮汐类型、术语
㈠
潮汐类型
根据潮汐的性质,可以将潮汐分为四种类型:
1、 正规半日潮
在一个太阴日内,发生两次高潮和低潮,两次高潮和两次低潮的高度都相差不大,
涨落潮时也相差不大。
2、 不正规半日潮混合潮
它基本上还具有半日潮的特征,但在一个太阴日内,相邻的高潮(低潮)的潮位相
差很大,涨潮时和落潮时也不相等。
3、 正规日潮
在半个月中,有连续1/2以上天数是日潮,而在其余天数为半日潮。
4、 不正规日潮混合潮
在半个月中,日潮的天数不超过7天,其余的天数为不正规半日潮。
㈡
潮汐术语
1、
平均海面(mean sea level , MSL)
根据长期潮汐观测记录,算得的某一时期内的海面平均高度。
2、
海图基准面(chart datum , CD)
起算海图水深的基准面。
3、
潮高基准面(tidal datum , TD)
计算潮高的起算面,一般为海图基准面,如两者不一致时,则应进行订正,才能将
潮高应用到海图上。
4、
潮差(tidal range)
相邻高、低潮潮高之差。
5、
大潮升(spring rise , SR)
从潮高基准面到平均大潮高潮面的高度。
6、
小潮升(neap rise , NR)
从潮高基准面到平均小潮高潮面的高度。
7、
平潮(slack)与停潮(stand)
当高潮发生后,海面有一段时间呈现停止升降的现象,叫平潮;低潮发生后,海面
也有一段时间呈现停止升降的现象,称为停潮。
8、
涨潮时间(duration of rise)
从低潮时到高潮时的时间间隔。
9、
落潮时间(duration of fall)
从高潮时到低潮时的时间间隔。
10、高高潮(higher high water , HHW)
在一个太阴日发生的两次高潮中潮高较高的高潮。
11、低高潮(lower high water , LHW)
在一个太阴日发生的两次高潮中潮高较低的高潮。
12、高低潮(higher low water , HLW)
在一个太阴日发生的两次低潮中潮高较高的低潮。
13、低低潮(lower low water , LLW)
在一个太阴日发生的两次低潮中潮高较低的低潮。
14、潮龄(tidal age)
由朔、望日到实际大潮发生的时间间隔称为潮龄。
15、平均高(低)潮间隙(mean high / low water interval , MHWI / MLWI)
每天月中天时刻至高(低)潮时的时间间隔的长期的平均值称为平均高(低)潮间
隙。
16、高(低)潮时差
主港与附港高(低)潮潮时之差。
17、潮差比
对半日潮港来说,是指附港的平均潮差与主港的平均潮差之比;
对日潮港来说,是指附港的回归潮大的潮差与主港的回 归潮大的潮差之比。
18、潮高差
主、附港潮高之差,(适用于英版《潮汐表》)。
19、改正值
使用潮差比由主港潮高计算附港潮高时,若附港基准面不是由主港基准面确定的,
需要对附港潮高加以订正,使之变为 从附港基准面起算,此订正数就是表列的改
正值。
如图5-1-11所示:
§13—2
中国《潮汐表》与潮汐推算
一、
中国《潮汐表》的几个说明
1、 出版情况
我国出版的年度《潮汐表》系由国家海洋局海洋情报研究所编制,共六册,前三册
覆盖中国沿岸,后三册覆盖世界大洋区域。
各册范围如下:
第一册:鸭绿江口至长江口;
第二册:长江口至台湾;
第三册:台湾至北部湾,包括广东、广西、南海诸岛;
第四册:太平洋及临邻近海区;
第五册:印度洋沿岸(含地中海),及欧洲水域;
第六册:大西洋沿岸及非洲东海岸。
《潮汐表》每年出版一次,下年度《潮汐表》均在本年度提前编好发行。
2、 主要内容
⑴ 主港潮汐预报表:
各主港的逐日高、低潮时及潮高;我国部分港口的逐时潮高。
⑵ 潮流预报表:
部分海峡、港湾、航道及渔场的潮流预报。
⑶ 差比数和潮信表:
用于以附港和主港差比数推算附港潮汐;用潮信资料概算潮汐。
⑷ 其它资料:
① 《部分港口潮高订正值表》;
② 《格林尼治月中天时刻表》;
③ 《东经120o月中天时刻表》;

④ 《月赤纬表(世界时0时)》;
⑤
梯形图卡等。
3、 注意事项
⑴ 我国沿海港口用北京标准时(东8区),
外国诸港均在每页下角注明所用标准时。
⑵ 若潮高基准面与海图基准面不一致时,
应予以更正。
如图5-1-12所示:
实际水深=海图水深+潮高+(海图基
准面-潮高基准面)
⑶ 关于《潮汐表》的误差和水文气象的影响:
①
正常情况下,《潮汐表》预报: 潮时误差在20min.~ 30min.
潮高误差在 20cm ~ 30cm.
②
特殊情况下,误差较大。
如:有台风、寒潮、处在江、河口的预报点、洪水等。
二、
利用《潮汐表》推算潮汐
1、 主港潮汐
按日期从“主港潮汐预报表”中直接查取。
2、 附港潮汐
⑴
差比数法
从“差比数和潮信表”中查出相对于主港的附港潮时差、潮差比、平均海面、季节
改正、及改正值后,按公式计算:

附港高(低)潮高=[主港高(低)潮高-(主港平均海面+主港平均海面季节改正)]
×潮差比+(附港平均海面+附港平均海面季节改正)
若主附港平均海面季节改正值较小时(<10cm)时,则可用下式计算:
附港高(低)潮高=主港高(低)潮高×潮差比+改正值
⑵ 潮信资料法
潮信资料包括平均大(小)潮升、平均高(低)潮间隙、平均海面。
从表中查得“格林月中天时”,则:
高(低)潮时=格林月中天时+平均高(低)潮间隙
上半月:高(低)潮时=(农历日期-1)×50min.+1200+平均高(低)潮间隙
下半月:高(低)潮时=(农历日期-16)×50min.+平均高(低)潮间隙
高(低)潮另一个潮时可由上述方法所得的潮时分别±1225求得:
