其中参数 alpha
是表面粗燥度(Roughness)的控制参数,下面两图是不同粗燥度的
GGX 分布曲线: The top image
shows a GGX distribution term with a roughness parameter of
0.5. The bottom image shows the same GGX distribution term with a
roughness parameter of 0.1. For both graphs, the X axis represents
the angle between the surface normal and the half vector.
几何项 Geometry Term
几何项(Geometry Term)采用 Smith
模型: 对 GGX 分布有: The Smith
visibility term for GGX as a function of the angle between the
surface normal and the light direction. The roughness used is 0.25,
and the angle between the normal and the view direction is 0.
Top graph shows a
comparison between GGX, Beckmann, normalized Gaussian, and SG
distribution terms with a roughness of 0.25. The bottom shows the
same comparison with a roughness of 0.5.
从上两幅图中可以看出,SG 近似结果丧失了 GGX
分布的长尾(Long Tails)。比较瘦、紧凑的钟形形状,以及长尾是
GGX分布的主要特征。
弯曲 SG
NDF 的 SG 近似:
是关于
h(half-vector)的函数,需要转换为关于
i(incident-vector)的函数。 通过旋转和压扁操作,关于入射方向的 SG 分布如下: Result of applying
a spherical warp to the SG distribution term (green)
compared with the actual GGX distribution (red). The top
graph shows a viewing angle of 0 degrees, and the bottom
graph shows a viewing angle of 45 degrees.
近似其他项
几何项:
菲涅尔项:
几何项和菲涅尔项都是用 h=
n 处的值来代替整个函数,非常简单粗暴。
结果
迈向各向异性
从上文中的结果图可以看出,摄像机是从贴地角(掠射角,Grazing
Angle)观察地面的,地面上呈现的高光形状过于宽而圆润,这与现实生活体验不同。 下左图是出射方向靠近表面法线(观察者在地面上方,几乎垂直的往下看地面)的
GGX 分布,下右图是出射方向与表面法线几乎垂直情况下(观察者贴地观察地面)的
GGX 分布: 3D graph of the
GGX distribution term. The left image shows the
distribution when the viewing angle is very low, while the
right image shows the distribution when the viewing angle is very
steep.
从图中可以看出,左图 GGX Lobe 宽而圆润,右图 GGX
Lobe 窄而扁平。
ASG 各向异性球面高斯函数
数学形式: An Anisotropic
Spherical Gaussian visualized on the surface of a sphere. has a value of 16, and has a value of
64. ASG 有两个有用的工具: a. 一个弯曲操作,此操作可以将 SG 表述的
NDF 分布转换为 ASG 表述 b.一个计算 SG 与
ASG 卷积的方法: 有 ASG 函数: </</a>