新浪博客

R语言中关联规则的实现与可视化

2014-08-01 10:57阅读:
> require(arules) #载入arules(Association Rules)
Warning message:
package ‘arules’ was built under R version 3.1.1
> require(arulesViz) #载入arulesViz关联规则可视化工具包
Loading required package: arulesViz
Loading required package: grid

Attaching package: ‘arulesViz’

The following object is masked from ‘package:base’:

abbreviate

Warning message:

package ‘arulesViz’ was built under R version 3.1.1
> data(Groceries) #载入Groceries数据集,包含9000多购买数据
> summary(Groceries) #查看该数据集的汇总信息
transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146

most frequent items:
whole milk other vegetables rolls/buns soda yogurt (Other)
2513 1903 1809 1715 1372 34055

element (itemset/transaction) length distribution:
sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27
2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55 46 29 14 14 9 11 4 6 1 1 1
28 29 32
1 3 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:
labels level2 level1
1 frankfurter sausage meet and sausage
2 sausage sausage meet and sausage
3 liver loaf sausage meet and sausage
> inspect(head(Groceries)) #了解前五组数据的详细情况
items
1 {citrus fruit,
semi-finished bread,
margarine,
ready soups}
2 {tropical fruit,
yogurt,
coffee}
3 {whole milk}
4 {pip fruit,
yogurt,
cream cheese ,
meat spreads}
5 {other vegetables,
whole milk,
condensed milk,
long life bakery product}
6 {whole milk,
butter,
yogurt,
rice,
abrasive cleaner}
> rule0 <- apriori(Groceries)

parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target ext
0.8 0.1 1 none FALSE TRUE 0.1 1 10 rules FALSE

algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [8 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 done [0.00s].
writing ... [0 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
> #以上使用apriori算法的默认参数进行运算
> #inspect查看具体生成的规则
> inspect(rule0)
NULL
> #手动设置apriori算法的相关参数,包括supportconfidence
> rule1 <- apriori(Groceries,parameter=list(support=0.01,confidence=0.5))

parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target ext
0.5 0.1 1 none FALSE TRUE 0.01 1 10 rules FALSE

algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.03s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [15 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
> inspect(rule1)
lhs rhs support confidence lift
1

我的更多文章

下载客户端阅读体验更佳

APP专享