提问,是推进课堂进程的有效手段,是吸引学生注意的有效途径,也是启发学生思维的有效策略。然而,在教学过程中,并不是所有问题都有意义和价值。一些无意义、无价值的问题不仅不会提高教学的效率,甚至会有损教学的质量。
一、秉持“渐进性”原则提问,遵循认知规律
数学是一门逻辑性很强的学科,学生只有先想明白了浅显的问题,才能具备探索深奥问题的能力,学生只有解决了“前因”的问题,才能得出“后果”的结论。因此,在课堂提问环节,教师应该遵循认知规律,秉持渐进性原则提问,使学生经历由浅到深、由易到难、由因到果的思维过程,展开循序渐进的学习。例如,在学习苏教版一年级下册《两位数加减两位数(不进位,不退位)》的时候,教师可以先出示下面的算式:“12+7=”“12+6=”。通过这两个算式,教师帮助学生唤醒“两位数加一位数”的学习经验和记忆,为学生的知识迁移做准备。在学生完成计算后,教师再出示新的算式:“12+13=”,并要求学生想办法计算算式的结果。因为有了前面两个算式的计算作为铺垫,学生很快想到了利用“拆分法”进行计算:有的把13分成7和6,进行分步计算;有的把13拆分成10和3,进行分步计算。在此基础上,教师进一步提出问题:“大家能够根据刚才的计算过程及结果,探索这道题的竖式计算方法吗?”就这样,教师秉持渐进性原则,逐渐增加提问的难度和深度,引导学生逐步展开思考。在这个过程中,教师充分尊重了学生的认知特点,帮助学生完成了思维的跨越和知识的迁移,使学生在问题引导下实现了独立思考和自主学习[1]。
二、秉持“层次性”原则提问,兼顾各方需求
在课堂提问过程中,教师不仅要尊重学生整体的认知规律,秉持渐进性原则设计问题和提出问题,还应该秉持层次性原则,针对不同层次的学生提出不同难度的问题,从而使全体学生都能够参与到课堂问答环节,并从课堂问答中获取学习灵感,感知学习乐趣。例如,在学习苏教版四年级下册《三角形的三边关系》的时候,教师可以为每组学生发放以下三组小木棒,木棒长度分别为:第一组,4cm、4cm、6cm;第二组,4cm、5cm、9cm;第三组,4cm、5cm、10cm。然后,教师要求学生利用这些小木棒摆拼三角形。当学生完成摆拼之后,教师提出了第一个问题:“这三组木棒中,哪组木棒能够摆成三角形?”这个问题的答案显而易见,是针对全体同学提出的问题。然后,教师提出第
一、秉持“渐进性”原则提问,遵循认知规律
数学是一门逻辑性很强的学科,学生只有先想明白了浅显的问题,才能具备探索深奥问题的能力,学生只有解决了“前因”的问题,才能得出“后果”的结论。因此,在课堂提问环节,教师应该遵循认知规律,秉持渐进性原则提问,使学生经历由浅到深、由易到难、由因到果的思维过程,展开循序渐进的学习。例如,在学习苏教版一年级下册《两位数加减两位数(不进位,不退位)》的时候,教师可以先出示下面的算式:“12+7=”“12+6=”。通过这两个算式,教师帮助学生唤醒“两位数加一位数”的学习经验和记忆,为学生的知识迁移做准备。在学生完成计算后,教师再出示新的算式:“12+13=”,并要求学生想办法计算算式的结果。因为有了前面两个算式的计算作为铺垫,学生很快想到了利用“拆分法”进行计算:有的把13分成7和6,进行分步计算;有的把13拆分成10和3,进行分步计算。在此基础上,教师进一步提出问题:“大家能够根据刚才的计算过程及结果,探索这道题的竖式计算方法吗?”就这样,教师秉持渐进性原则,逐渐增加提问的难度和深度,引导学生逐步展开思考。在这个过程中,教师充分尊重了学生的认知特点,帮助学生完成了思维的跨越和知识的迁移,使学生在问题引导下实现了独立思考和自主学习[1]。
二、秉持“层次性”原则提问,兼顾各方需求
在课堂提问过程中,教师不仅要尊重学生整体的认知规律,秉持渐进性原则设计问题和提出问题,还应该秉持层次性原则,针对不同层次的学生提出不同难度的问题,从而使全体学生都能够参与到课堂问答环节,并从课堂问答中获取学习灵感,感知学习乐趣。例如,在学习苏教版四年级下册《三角形的三边关系》的时候,教师可以为每组学生发放以下三组小木棒,木棒长度分别为:第一组,4cm、4cm、6cm;第二组,4cm、5cm、9cm;第三组,4cm、5cm、10cm。然后,教师要求学生利用这些小木棒摆拼三角形。当学生完成摆拼之后,教师提出了第一个问题:“这三组木棒中,哪组木棒能够摆成三角形?”这个问题的答案显而易见,是针对全体同学提出的问题。然后,教师提出第
