抽象是从许多事物中舍弃个别的、非本质属性,得到共同的、本质属性的思维过程,是形成概念的必要手段。最初的抽象是基于直观的,正如康德所说:
人类的一切知识都是从直观开始,从那里进到概念,而以理念结束。
对于数学,抽象主要包括两个方面的内容:数量与数量关系,图形与图形关系。这就意味着,数学的抽象不仅仅要抽象出数学所要研究的对象,还要抽象出这些研究对象之间的关系。与研究对象的存在性相比,研究对象之间的关系更为本质。
人们把现实生活中的数量抽象为数,形成自然数,并且用十个符号和数位进行表示,得到了自然数集。在现实生活中,数量关系的核心是多与少,人们又把这种关系抽象到数学内部,这就是数的大与小。后来,人们又把大小关系推演为更一般的序关系。
由大小关系的度量产生了自然数的加法,由加法的逆运算产生了减法,由加法的简便运算产生了乘法,由乘法的逆运算产生了除法。因此,数的运算本质是四则运算,这些运算都是基于加法的。通过运算的实践以及对运算性质的研究,抽象出运算法则。为了保证运算结果的封闭性,就实现了数集的扩张。在本质上,数集的扩张是因为逆运算:为了减法运算的封闭,自然数集扩张为整数集;为了除法运算的封闭,整数集扩张为有理数集。
数学还有第五种运算——极限运算,涉及数以及数的运算的第二次抽象。为了很好地描述极限运算,需要解决实数的运算和连续;为了很好地定义实数,需要解决无理数的定义和运算;为了清晰定义无理数,需要重新认识有理数。于是,小数形式有理数的出现,完全背离了用分数形式表达有理数的初衷。这个初衷就是:有理数是可以用整数表示的数。它表述的现实背景是:部分与整体的关系,或者,线段长度之间的比例关系。
1872年,基于小数形式的有理数,康托用基本序列的方法,通过有理数列的极限定义了实数,解决了实数的运算问题;戴德金用分割的方法,通过对有理数的分割定义了实数,解决了实数的连续性问题。1889年,皮亚诺构建算术公理体系,重新定义了自然数。1908年,策梅洛给出了集合论公理体系。借助
人类的一切知识都是从直观开始,从那里进到概念,而以理念结束。
对于数学,抽象主要包括两个方面的内容:数量与数量关系,图形与图形关系。这就意味着,数学的抽象不仅仅要抽象出数学所要研究的对象,还要抽象出这些研究对象之间的关系。与研究对象的存在性相比,研究对象之间的关系更为本质。
人们把现实生活中的数量抽象为数,形成自然数,并且用十个符号和数位进行表示,得到了自然数集。在现实生活中,数量关系的核心是多与少,人们又把这种关系抽象到数学内部,这就是数的大与小。后来,人们又把大小关系推演为更一般的序关系。
由大小关系的度量产生了自然数的加法,由加法的逆运算产生了减法,由加法的简便运算产生了乘法,由乘法的逆运算产生了除法。因此,数的运算本质是四则运算,这些运算都是基于加法的。通过运算的实践以及对运算性质的研究,抽象出运算法则。为了保证运算结果的封闭性,就实现了数集的扩张。在本质上,数集的扩张是因为逆运算:为了减法运算的封闭,自然数集扩张为整数集;为了除法运算的封闭,整数集扩张为有理数集。
数学还有第五种运算——极限运算,涉及数以及数的运算的第二次抽象。为了很好地描述极限运算,需要解决实数的运算和连续;为了很好地定义实数,需要解决无理数的定义和运算;为了清晰定义无理数,需要重新认识有理数。于是,小数形式有理数的出现,完全背离了用分数形式表达有理数的初衷。这个初衷就是:有理数是可以用整数表示的数。它表述的现实背景是:部分与整体的关系,或者,线段长度之间的比例关系。
1872年,基于小数形式的有理数,康托用基本序列的方法,通过有理数列的极限定义了实数,解决了实数的运算问题;戴德金用分割的方法,通过对有理数的分割定义了实数,解决了实数的连续性问题。1889年,皮亚诺构建算术公理体系,重新定义了自然数。1908年,策梅洛给出了集合论公理体系。借助
